A Suite of Intelligent Tools for Early Detection and Prevention of Blackouts in Power Interconnections


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose a suite of intelligent tools based on the integration of methods of agent modeling and machine learning for the improvement of protection systems and emergency automatics. We propose an online approach to the assessment and management of dynamic security of electric power systems (EPS) with the use of a streaming modification of the random forest algorithm. The suite allows to recognize dangerous modes of complex closed-loop EPS, preventing the risk of emergencies on early stages. We show results of experimental tests on IEEE test systems.

About the authors

N. I. Voropai

Melentiev Energy Systems Institute, Siberian Branch

Author for correspondence.
Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

N. V. Tomin

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

D. N. Sidorov

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

V. G. Kurbatsky

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

D. A. Panasetsky

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

A. V. Zhukov

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

D. N. Efimov

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

A. B. Osak

Melentiev Energy Systems Institute, Siberian Branch

Email: voropai@isem.irk.ru
Russian Federation, Irkutsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.