Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization
- Авторы: Nazin A.V.1
- 
							Учреждения: 
							- Trapeznikov Institute of Control Sciences
 
- Выпуск: Том 79, № 1 (2018)
- Страницы: 78-88
- Раздел: Topical Issue
- URL: https://journals.rcsi.science/0005-1179/article/view/150754
- DOI: https://doi.org/10.1134/S0005117918010071
- ID: 150754
Цитировать
Аннотация
A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ RN is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in RN with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.
Об авторах
A. Nazin
Trapeznikov Institute of Control Sciences
							Автор, ответственный за переписку.
							Email: nazine@ipu.ru
				                					                																			                												                	Россия, 							Moscow						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					