Two algorithms for estimating test complexity levels
- Авторы: Kibzun A.I.1, Zharkov E.A.1
- 
							Учреждения: 
							- Moscow Aviation Institute
 
- Выпуск: Том 78, № 12 (2017)
- Страницы: 2165-2177
- Раздел: Stochastic Systems
- URL: https://journals.rcsi.science/0005-1179/article/view/150735
- DOI: https://doi.org/10.1134/S0005117917120050
- ID: 150735
Цитировать
Аннотация
We study the problem of estimating the complexity levels of test problems and levels of preparation of the students that arises in learning management systems. To solve the problem, we propose two algorithms for processing test results. The first algorithm is based on the assumption that random answers of the test takers are described by a logistic distribution. To compute test problem complexities and levels of preparation of the students, we use the maximum likelihood method and the quasi-Newton Broyden–Fletcher–Goldfarb–Shanno optimization method, where the likelihood function is constructed in a special way based on Rasch’s model. The second algorithm is heuristic and is based on recurrent recomputation of initial estimates obtained by adding up the positive answers of students separately by columns and rows of the matrix of answers, where columns correspond to answers of all students for a specific test, and rows correspond to answers of a specific student for all tests. We consider an example where we compare the results of applying the proposed algorithms.
Об авторах
A. Kibzun
Moscow Aviation Institute
							Автор, ответственный за переписку.
							Email: kibzun@mail.ru
				                					                																			                												                	Россия, 							Moscow						
E. Zharkov
Moscow Aviation Institute
														Email: kibzun@mail.ru
				                					                																			                												                	Россия, 							Moscow						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					