Classification algorithm based on pairwise comparison of features
- Авторы: Kornoushenko E.K.1
- 
							Учреждения: 
							- Trapeznikov Institute of Control Sciences
 
- Выпуск: Том 78, № 11 (2017)
- Страницы: 2062-2074
- Раздел: Intellectual Control Systems, Data Analysis
- URL: https://journals.rcsi.science/0005-1179/article/view/150726
- DOI: https://doi.org/10.1134/S000511791711011X
- ID: 150726
Цитировать
Аннотация
We propose an alternative approach to classification that differs from known approaches in that instead of comparing the tuple of values of a test object’s features with similar tuples of features for objects in the training set, in this approach we make independent pairwise comparisons of every pair of feature values for the objects being compared. Here instead of using the notion of a “nearest neighbors” for test object, we introduce the notion of “admissible proximity” for each feature value in the test object. In this approach, we propose an alternative algorithm for classification that has a number of significant practical features. The algorithm’s quality was evaluated on sample problems taken from the well-known UCI repository and related to various aspects of human activity. The results show that the algorithm is competitive compared to known classification algorithms.
Об авторах
E. Kornoushenko
Trapeznikov Institute of Control Sciences
							Автор, ответственный за переписку.
							Email: ekorno@mail.ru
				                					                																			                												                	Россия, 							Moscow						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					