Optimal arrivals in a two-server random access system with loss
- Авторы: Chirkova Y.V.1
- 
							Учреждения: 
							- Institute of Applied Mathematical Research
 
- Выпуск: Том 78, № 3 (2017)
- Страницы: 557-580
- Раздел: Mathematical Game Theory and Applications
- URL: https://journals.rcsi.science/0005-1179/article/view/150568
- DOI: https://doi.org/10.1134/S0005117917030146
- ID: 150568
Цитировать
Аннотация
This paper considers a two-server random access system with loss that receives requests on a time interval [0, T]. The users (players) send their requests to the system, and then the system provides a random access to one of its two servers with some known probabilities. We study the following non-cooperative game for this service system. As his strategy, each player chooses the time to send his request to the system, trying to maximize the probability of servicing. The symmetric Nash equilibrium acts as the optimality criterion. Two models are considered for this game. In the first model the number of players is deterministic, while in the second it obeys the Poisson distribution. We demonstrate that there exists a unique symmetric equilibrium for both models. Finally, some numerical experiments are performed to compare the equilibria under different values of the model parameters.
Об авторах
Yu. Chirkova
Institute of Applied Mathematical Research
							Автор, ответственный за переписку.
							Email: julia@krc.karelia.ru
				                					                																			                												                	Россия, 							Petrozavodsk						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					