Временнáя структура усредненной меры вращения для аккреционного диска в локальном приближении

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается временна́я структура усредненной меры вращения и эволюция энергетических характеристик аккреционного диска в рамках трехмерной модели в локальном приближении (shearing box). Временнáя структура меры вращения состоит из низкочастотных и высокочастотных знакопеременных осцилляций. Обсуждаются механизмы формирования этих осцилляций и их связь с динамо-эффектом. Проведен анализ двумерных распределений и вертикальной структуры меры вращения и магнитной энергии для моментов времени, соответствующих экстремумам и близким к нулю значениям меры вращения. Показано, что экстремумы меры вращения формируются за счет нескольких отдельных турбулентных структур с высокими амплитудами, которые связаны с магниторотационной неустойчивостью и неустойчивостью Паркера. Области локализации таких структур соответствуют областям с высокими локальными значениями магнитной энергии. Обсуждается возможность оценки периода динамо-эффекта по данным измерений меры вращения, рассматриваются случаи источников Sgr A* и M87*.

Об авторах

М. А. Булдаков

Астрокосмический центр Физического института им. П. Н. Лебедева Российской академии наук

Автор, ответственный за переписку.
Email: buldakov@phystech.edu
Россия, Москва

А. С. Андрианов

Астрокосмический центр Физического института им. П. Н. Лебедева Российской академии наук

Email: buldakov@phystech.edu
Россия, Москва

Список литературы

  1. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
  2. D. Lynden-Bell and J. E. Pringle, Monthly Not. Roy. Astron. Soc. 168, 603 (1974).
  3. S. A. Balbus and J. F. Hawley, Rev. Modern Physics 70(1), 1 (1998).
  4. M. C. Begelman, N. Scepi, and J. Dexter, Monthly Not. Roy. Astron. Soc. 511(2), 2040 (2022).
  5. B. R. Ryan, C. F. Gammie, S. Fromang, and P. Kestener, 840(1), id. 6 (2017).
  6. U. Das, M. C. Begelman, and G. Lesur, Monthly Not. Roy. Astron. Soc. 473(2), 2791 (2018).
  7. S. A. Balbus and J. F. Hawley, 376, 214 (1991).
  8. J. F. Hawley and S. A. Balbus, 376, 223 (1991).
  9. E. P. Velikhov, JETP 9, 995 (1959).
  10. S. Chandrasekhar, Proc. Nat. Acad. Sci. USA 46(2), 253 (1960).
  11. J. C. McKinney, A. Tchekhovskoy, and R. D. Blandford, Monthly Not. Roy. Astron. Soc. 423(4), 3083 (2012).
  12. M. D. Marshall, M. J. Avara, and J. C. McKinney, Monthly Not. Roy. Astron. Soc. 478(2), 1837 (2018).
  13. R. Wielebinski, J. Astron. History and Heritage 15(2), 76 (2012).
  14. C. Y. Kuo, K. Asada, R. Rao, M. Nakamura, et al., Astrophys. J. Letters 783(2), id. L33 (2014).
  15. Y.-P. Li, F. Yuan, and F.-G. Xie, 830(2), id. 78 (2016).
  16. A. Ricarte, B. S. Prather, G. N. Wong, R. Narayan, C. Gammie, and M. D. Johnson, Monthly Not. Roy. Astron. Soc. 498(4), 5468 (2020).
  17. F. Govoni, K. Dolag, M. Murgia, L. Feretti, et al., Astron. and Astrophys. 522, id. A105 (2010).
  18. G. B. Taylor, J. Ge, and C. P. O’Dea, Astron. J. 110, 522 (1995).
  19. J. L. Han, R. N. Manchester, W. van Straten, and P. Demorest, Astrophys. J. Suppl. 234(1), id. 11 (2018).
  20. J. M. Weisberg, J. M. Cordes, B. Kuan, K. E. Devine, J. T. Green, and D. C. Backer, Astrophys. J. Suppl. 150(1), 317 (2004).
  21. C. L. Van Eck, J. C. Brown, A. Ordog, R. Kothes, et al., Astrophys. J. Suppl. 253(2), id. 48 (2021).
  22. N. C. Raycheva, M. Haverkorn, S. Ideguchi, J. M. Stil, et al., Astron. and Astrophys. 663, id. A170 (2022) .
  23. R. T. Zavala and G. B. Taylor, 566(1), L9 (2002).
  24. J. Park, K. Hada, M. Kino, M. Nakamura, H. Ro, and S. Trippe, 871(2), id. 257 (2019).
  25. F. Yuan, H. Wang, and H. Yang, 924(2), id. 124 (2022).
  26. R. D. Nan, H. Y. Zhang, D. C. Gabuzda, J. S. Ping, R. T. Schilizzi, W. W. Tian, and M. Inoue, Astron. and Astrophys. 357, 891 (2000).
  27. G. C. Bower, M. C. H. Wright, H. Falcke, and D. C. Backer, 588(1), 331 (2003).
  28. D. P. Marrone, J. M. Moran, J.-H. Zhao, and R. Rao, 654(1), L57 (2007).
  29. J.-Y. Kim, T. P. Krichbaum, A. P. Marscher, S. G. Jorstad, et al., Astron. and Astrophys. 622, id. A196 (2019).
  30. R. L. Plambeck, G. C. Bower, R. Rao, D. P. Marrone, et al., 797(1), id. 66 (2014).
  31. M. Wielgus, S. Issaoun, I. Marti-Vidal, R. Emami, M. Moscibrodzka, C. D. Brinkerink, C. Goddi, and E. Fomalont, Astron. and Astrophys. 682, id. A97 (2024).
  32. M. Villenave, F. Ménard, W. R. F. Dent, G. Duchêne, et al., Astron. and Astrophys. 642, id. A164 (2020).
  33. J. Hashimoto, T. Muto, R. Dong, Y. Hasegawa, N. van der Marel, M. Tamura, M. Takami, and M. Momose, 908(2), id. 250 (2021).
  34. F. Louvet, C. Dougados, S. Cabrit, A. Hales, et al., Astron. and Astrophys. 596, id. A88 (2016).
  35. T.-H. Hsieh, N. Hirano, A. Belloche, C.-F. Lee, Y. Aso, and S.-P. Lai, 871(1), id. 100 (2019).
  36. S. Richling and H. W. Yorke, 539(1), 258 (2000).
  37. A.A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, et al., Astron. Rep. 60(1), 1 (2016).
  38. Y. Io and T. K. Suzuki, 780(1), id. 46 (2014).
  39. C. J. Bambic, E. Quataert, and M. W. Kunz, Monthly Not. Roy. Astron. Soc. 527(2), 2895 (2024).
  40. T. K. Suzuki, M. Ogihara, A. Morbidelli, A. Crida, and T. Guillot, Astron. and Astrophys. 596, id. A74 (2016).
  41. P. C. Tribble, Monthly Not. Roy. Astron. Soc. 250, 726 (1991).
  42. J. A. Eilek, Astron. J. 98, 244 (1989).
  43. J. A. Eilek, Astron. J. 98, 256 (1989).
  44. M. S. Nakwacki, G. Kowal, R. Santos-Lima, E. M. de Gouveia Dal Pino, and D. A. Falceta-Gonçalves, Monthly Not. Roy. Astron. Soc. 455(4), 3702 (2016).
  45. R. Santos-Lima, E. M. de Gouveia Dal Pino, D. A. Falceta-Gonçalves, M. S. Nakwacki, and G. Kowal, Monthly Not. Roy. Astron. Soc. 465(4), 4866 (2017).
  46. A.Y. L. On, J. Y. H. Chan, K. Wu, C. J. Saxton, and L. van Driel-Gesztelyi, Monthly Not. Roy. Astron. Soc. 490(2), 1697 (2019).
  47. H. N. Latter, S. Fromang, and O. Gressel, Monthly Not. Roy. Astron. Soc. 406(2), 848 (2010).
  48. J. F. Hawley, S. A. Richers, X. Guan, and J. H. Krolik, 772(2), id. 102 (2013).
  49. G. Lesur and P.-Y. Longaretti, Astron. And Astrophys. 504(2), 309 (2009).
  50. K. Hirai, Y. Katoh, N. Terada, and S. Kawai, 853(2), id. 174 (2018).
  51. A.Riols, F. Rincon, C. Cossu, G. Lesur, G. I. Ogilvie, and P.-Y. Longaretti, Astron. and Astrophys. 598, id. A87 (2017).
  52. J. D. Hogg and C. S. Reynolds, 861(1), id. 24 (2018).
  53. P. Dhang and P. Sharma, Monthly Not. Roy. Astron. Soc. 482(1), 848 (2019).
  54. J. F. Hawley, C. F. Gammie, and S. A. Balbus, 440, 742 (1995).
  55. G. Bodo, F. Cattaneo, A. Mignone, and P. Rossi, Astrophys. J. Letters 787(1), id. L13 (2014).
  56. A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari, Astrophys. J. Suppl. 170(1), 228 (2007).
  57. L. E. Held and G. Mamatsashvili, Monthly Not. Roy. Astron. Soc. 517(2), 2309 (2022).
  58. G. Bodo, F. Cattaneo, A. Mignone, and P. Rossi, 761(2), id. 116 (2012).
  59. A. S. Hales, S. Pérez, C. Gonzalez-Ruilova, L. A. Cieza, et al., 900(1), id. 7 (2020).
  60. F. Bacchini, L. Arzamasskiy, V. Zhdankin, G. R. Werner, M. C. Begelman, and D. A. Uzdensky, 938(1), id. 86 (2022) .
  61. Y.-F. Jiang, S. W. Davis, and J. M. Stone, 827(1), id. 10 (2016).
  62. Y.-X. Chen, Y.-F. Jiang, J. Goodman, and E. C. Ostriker, 948(2), id. 120 (2023).
  63. F. Pucci, K. Tomida, J. Stone, S. Takasao, H. Ji, and S. Okamura, 907(1), id. 13 (2021) .
  64. R. Yellin-Bergovoy, O. M. Umurhan, and E. Heifetz, Geophys. and Astrophys. Fluid Dyn. 115(5-6), 674 (2021).
  65. J. B. Simon, G. Lesur, M. W. Kunz, and P. J. Armitage, Monthly Not. Roy. Astron. Soc. 454(1), 1117 (2015) .
  66. K. A. Sorathia, C. S. Reynolds, J. M. Stone, and K. Beckwith, 749(2), id. 189 (2012) .
  67. D. W. Pesce, D. C. M. Palumbo, R. Narayan, L. Blackburn, et al., 923(2), id. 260 (2021) .
  68. K. I. Öberg, V. V. Guzmán, C. Walsh, Y. Aikawa, et al., Astrophys. J. Suppl. 257(1), id. 1 (2021).
  69. T. Tsukagoshi, H. Nomura, T. Muto, R. Kawabe, et al., 928(1), id. 49 (2022) .
  70. M. Ansdell, J. P. Williams, L. Trapman, S. E. van Terwisga, et al., 859(1), id. 21 (2018) .
  71. X.-N. Bai and J. M. Stone, 767(1), id. 30 (2013) .
  72. J. M. Stone, J. F. Hawley, C. F. Gammie, and S. A. Balbus, 463, 656 (1996).
  73. K. Sai, Y. Katoh, N. Terada, and T. Ono, 767(2), id. 165 (2013).
  74. M. C. Begelman and J. E. Pringle, Monthly Not. Roy. Astron. Soc. 375(3), 1070 (2007).
  75. K. A. Miller and J. M. Stone, 534(1), 398 (2000) .
  76. O. Gressel, Monthly Not. Roy. Astron. Soc. 405(1), 41 (2010) .
  77. O. Gressel and M. E. Pessah, 810(1), id. 59 (2015) .
  78. M. Flock, N. Dzyurkevich, H. Klahr, N. J. Turner, and Th. Henning, 735(2), id. 122 (2011) .
  79. T. K. Suzuki and S. Inutsuka, Astrophys. J. Letters 691(1), L49 (2009).
  80. J. Walker and S. Boldyrev, Monthly Not. Roy. Astron. Soc. 470(3), 2653 (2017).
  81. P. Bhat, F. Ebrahimi, and E. G. Blackman, Monthly Not. Roy. Astron. Soc. 462(1), 818 (2016).
  82. A. E. Dudorov and S. A. Khaibrakhmanov, Astron. Astrophys. Trans. 29(4), 429 (2016) .
  83. L. H. S. Kadowaki, E. M. De Gouveia Dal Pino, and J. M. Stone, 864(1), id. 52 (2018) .
  84. J. R. Najita and E. A. Bergin, 864(2), id. 168 (2018) .
  85. F. Nauman and E. G. Blackman, Monthly Not. Roy. Astron. Soc. 446(2), 2102 (2015).
  86. M. D. Johnson, K. Akiyama, L. Blackburn, K. L. Bouman, et al., Galaxies 11(3), 61 (2023).
  87. V. L. Fish, M. Shea, and K. Akiyama, Adv. Space Research 65(2), 821 (2020).
  88. S. Doeleman, L. Blackburn, J. Dexter, J. L. Gomez, et al., Bull. Amer. Astron. Soc. 51(7), id. 256 (2019) .
  89. A. Chael, M. D. Johnson, and A. Lupsasca, 918(1), id. 6 (2021).
  90. M. A. Brentjens and A. G. de Bruyn, Astron. and Astrophys. 441(3), 1217 (2005).
  91. G. Heald, in Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, Proc. of the IAU, edited by K. G. Strassmeier, A. G. Kosovichev, J. E. Beckman, IAU Symposium 259, 591 (2009).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».