Search for Solar Sources of Interplanetary Coronal Mass Ejections Using the Reverse Model of Magnetodynamic Interaction of the Solar Wind in the Heliosphere

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the development and testing of methods for predicting interplanetary coronal mass ejections (ICMEs), it is important to establish their relationship with sources on the Sun—coronal mass ejections (CMEs) observed by coronagraphs. The often used inverse ballistic calculation of the CME onset time does not consider variations in the CME speed when moving through the heliosphere and can give an uncertainty up to a day. With a good accuracy (on the order of ±10 h), the propagation of CMEs in the heliosphere from the Sun to the Earth is described by the model of the magnetodynamic interaction of CMEs with the background solar wind (drag-based model, DBM). In this paper, we propose to search for possible coronal sources of ICMEs, observed near the Earth, using the reverse model of magnetodynamic interaction (reverse DBM, RDBM), which reconstructs in the reverse course the probable propagation of CMEs in the heliosphere and determines their outflow parameters in the solar corona using the measured ICME parameters. The model uses the speed of the background solar wind, which is calculated from the area of coronal holes in the central part of the Sun and presented on the website of the Space Monitoring Data Center of the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU), with correction factors.

Sobre autores

D. Rodkin

Lebedev Physical Institute, Russian Academy of Sciences

Email: rodkindg@gmail.com
Moscow, Russia

V. Slemzin

Lebedev Physical Institute, Russian Academy of Sciences

Email: rodkindg@gmail.com
Moscow, Russia

Yu. Shugay

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Autor responsável pela correspondência
Email: rodkindg@gmail.com
Moscow, Russia

Bibliografia

  1. I. G. Richardson and H. V. Cane, J. Geophys. Res. 109, A09104 (2004).
  2. Ю. И. Ермолаев, Н. С. Николаева, И. Г. Лодкина, М. Ю. Ермолаев, Космич. исслед. 47, 99–113 (2009).
  3. I. G. Richardson and H. V. Cane, Solar Phys. 264, 189–237 (2010).
  4. H. S. Hudson and E. W. Cliver, J. Geophys. Res. 106, 25199 (2001).
  5. В. А. Слемзин, Ю. С. Шугай, Космич. исслед. 53, 51 (2015).
  6. R. A. Harrison, P. Bryans, G. M. Simnett, and M. Lyons, Astron. and Astrophys. 400, 1071–1083 (2003).
  7. K. Dissauer, A. M. Veronig, M. Temmer, and T. Podladchikova, Astrophys. J. 874, 123 (2019).
  8. D. M. Rust and E. Hildner, Solar Phys. 48, 381–387 (1976).
  9. H. S. Hudson, J. R. Lemen, O. C. St. Cyr, A. C. Sterling, and D. F. Webb, Geophys. Res. Lett. 25, 2481–2484 (1998).
  10. B. Vršnak, Solar Phys. 202, 173 (2001).
  11. B. Vršnak and N. Gopalswamy, J. Geophys. Res.: Space Phys. 107, 1019 (2002).
  12. P. J. Cargill, Solar Phys. 221, 135 (2004).
  13. B. Vršnak and T. Žic, Astron. and Astrophys. 472, 937 (2007).
  14. B. Vršnak, T. Žic, D. Vrbanec, M. Temmer, T. Rollett, C. Möstl, A. Veronig, J. Calogovic, M. Dumbovic, S. Lulic, Y.-J. Moon, and A. Shanmugaraju, Solar Phys. 285, 295 (2013).
  15. B. Vršnak, J. Space Weather Space Clim. 11, 34 (2021).
  16. M. Dumbovic, J. Calogovic, K. Martinic, B. Vrsnak, D. Sudar, M. Temmer, and A. Veronig, Frontiers in Astronomy and Space Sciences 8, 58 (2021).
  17. B. Vršnak, D. Ruždjak, D. Sudar, and N. Gopalswamy, Astron. and Astrophys. 423, 717–728 (2004).
  18. A. Vourlidas, S. Patsourakos, and N. P. Savani, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, 20180096 (2019).
  19. Y. Shugay, V. Kalegaev, K. Kaportseva, V. Slemzin, D. Rodkin, and V. Eremeev, Universe 8, 565 (2022).
  20. G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, J. D. Moses, D. G. So-cker, K. P. Dere, P. L. Lamy, A. Llebaria, M. V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and C. J. Eyles, Solar Phys. 162, 357–402 (1995).
  21. E. Robbrecht and D. Berghmans, Astron. and Astrophys. 425, 1097–1106 (2004).
  22. E. Kraaikamp and C. J. Verbeeck, Space Weather Space Clim. 5, A18 (2015).
  23. Ю. С. Шугай, И. С. Веселовский, Д. Б. Ситон, Д. Берг-манс, Астрон. вестник 45, 560–571 (2011).
  24. S. J. Hofmeister, A. Veronig, M. Temmer, S. Vennerstrom, B. Heber, and B. Vršnak, J. Geophys. Res.: Space Phys. 123, 1738–1753 (2018).
  25. Ю. С. Шугай, Метеорология и гидрология 3, 58–66 (2021).
  26. Ю. С. Шугай, К. Б. Капорцева, Геомагнетизм и аэрономия 61, 148–159 (2021).
  27. J. Čalogović, M. Dumbović, D. Sudar, B. Vršnak, K. Mar-tinić, M. Temmer, and A. Veronig, Solar Phys. 296, 114 (2021).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (128KB)

Declaração de direitos autorais © Д.Г. Родькин, В.А. Слемзин, Ю.С. Шугай, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies