Neutrino Spectra of Magneto-Rotational Supernovae and Observations Using Large-Volume Telescopes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dynamics of neutrinos in hot and dense magnetized matter, corresponding to a magneto-rotational explosion of supernovae, is considered. It is shown that the effective collisions of neutrinos in a magnetized nucleon gas, due to the Gamow–Teller component of the neutral current, change from exo- to endo-energetic scattering, when the neutrino energy becomes approximately four times higher than the temperature of the substance. Correspondingly, the energy transfer cross section in the neutrino kinetics changes from positive to negative values under these conditions. For realistic parameters of supernovae, the considered effects lead to an increase in the hardness of the neutrino spectra. The possibilities of detecting supernova neutrinos by large-volume observatories KM3NeT and Baikal-GVD are discussed.

Sobre autores

V. Kondratyev

N.N. Bogolyubov Laboratory of Theoretical Physics; Dubna State University

Email: vkondrat@theor.jinr.ru
Dubna, Russia; Dubna, Russia

S. Cherubini

Department of Physics and Astronomy “Ettore Majorana”, University of Catania

Autor responsável pela correspondência
Email: vkondrat@theor.jinr.ru
Catania, Italy

Bibliografia

  1. G. S. Bisnovatyi-Kogan Stellar Physics (Springer-Verlag, Berlin, 2011).
  2. S. A. Colgate, R. H. White, Astrophys. J. 143, 626 (1966).
  3. H. A. Bethe, H. A. Wilson, Astrophys. J. 295, 14 (1985).
  4. S. G. Moiseenko, G. S. Bisnovatyi-Kogan, N. V. Ardeljan, Monthly Not. Roy. Astron. Soc. 370, 501 (2006).
  5. G. S. Bisnovatyi-Kogan, S. G. Moiseenko, N. V. Ardelyan, Acta Polytechnica CTU Proc. 1, 181 (2014).
  6. H.-T. Janka, T. Melson, T. Summa, Ann. Rev. Nucl. Part. Sci. 66, 341 (2016).
  7. V. N. Kondratyev, Eur. Phys. J. A 50, 7 (2014).
  8. V. N. Kondratyev, Monthly Not. Roy. Astron. Soc. 480, 5380 (2018).
  9. В. Н. Кондратьев, Ю. В. Коровинa, Письма в ЖЭТФ 102, 155 (2015) [V.N. Kondratyev, Yu. V. Korovina, JETP Letters 102, 131 (2015)].
  10. V. N. Kondratyev, Universe 7, 487 (2021).
  11. V. N. Kondratyev et al., Phys. Rev. C 100, 045802 (2019).
  12. В. Н. Кондратьев и др., Изв. РАН сер. физическая 84, 1167 (2020) [V.N. Kondratyev et al. Bull. RAS: Physics. 84, 962 (2020)].
  13. D. S. Svinkin, K. Hurley, R. L. Aptekar, S. V. Golenetskii, D. D. Frederiks, Monthly Not. Roy. Astron. Soc. 447, 1028 (2015).
  14. В. Н. Кондратьев, ЭЧАЯ 50, 722 (2019) [V. N. Kondratyev, PPN 50. 613 (2019)].
  15. T. Prasanna, M. S. B. Coleman, M. J. Raives, T. A. Thompson, Monthly Not. Roy. Astron. Soc. 517, 3008 (2022).
  16. V. N. Kondratyev, T. D. Lobanovskaya, D. B. Torekhan, Particles 5, 128 (2022).
  17. А. Ю. Игнатовский, Г. С. Бисноватый-Коган, Астрон. журн. 99, 211 (2022).
  18. S. Aiello, et al., Eur. Phys. J. C 82, 317 (2022).
  19. В. Н. Кондратьев, Н. Г. Хорькова, С. Кэрубини, ЯФ 86, в печати (2023) [V.N. Kondratyev, N.G. Khor’kova, S. Cherubini, Phys. At. Nucl. 86, in press (2023)].
  20. S. Adrian-Martinez, et al., J. Phys. G 43, 084001 (2016).
  21. A. D. Avrori, et al., EPJ WoC 136, 04007 (2017).
  22. K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62, 81 (2012).
  23. R. Abbasi, et al., Astron. and Astrophys. 535, A109 (2011) (Erratum: Astron. Astrophys. 563, C1 (2014)).
  24. The Garching Core-Collapse Supernova Research. Available online: https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/ (accessed on 7 July 2022).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (474KB)
3.

Baixar (644KB)
4.

Baixar (126KB)

Declaração de direitos autorais © В.Н. Кондратьев, С. Кэрубини, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies