Application of artificial neural networks for forecasting photovoltaic system parameters
- 作者: Miloudi L.1, Acheli D.1, Kesraoui M.1
-
隶属关系:
- University M’HamedBougara of Boumerdès
- 期: 卷 53, 编号 2 (2017)
- 页面: 85-91
- 栏目: Direct Conversion of Solar Energy to Electricity
- URL: https://journals.rcsi.science/0003-701X/article/view/149271
- DOI: https://doi.org/10.3103/S0003701X17020104
- ID: 149271
如何引用文章
详细
The main element which justifies the installation of a photovoltaic system is the solar energy potential. Various structures of artificial neural networks (ANNs) are used for predicting the sun location, the global solar radiation (GSR) at horizontal and inclined plans. Real meteorological data have been exploited in order to validate the computation results. The ANNs are also carried out to predict the current-voltage characteristics of the photovoltaic module. It can be concluded that the ANNs effectively predict the behavior of photovoltaic system parameters with good a coefficient of determination.
作者简介
Lalia Miloudi
University M’HamedBougara of Boumerdès
编辑信件的主要联系方式.
Email: lamiloudi@univ-boumerdes.dz
阿尔及利亚, Boumerdès
Dalila Acheli
University M’HamedBougara of Boumerdès
Email: lamiloudi@univ-boumerdes.dz
阿尔及利亚, Boumerdès
Mohamed Kesraoui
University M’HamedBougara of Boumerdès
Email: lamiloudi@univ-boumerdes.dz
阿尔及利亚, Boumerdès
补充文件
