Application of artificial neural networks for forecasting photovoltaic system parameters


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The main element which justifies the installation of a photovoltaic system is the solar energy potential. Various structures of artificial neural networks (ANNs) are used for predicting the sun location, the global solar radiation (GSR) at horizontal and inclined plans. Real meteorological data have been exploited in order to validate the computation results. The ANNs are also carried out to predict the current-voltage characteristics of the photovoltaic module. It can be concluded that the ANNs effectively predict the behavior of photovoltaic system parameters with good a coefficient of determination.

作者简介

Lalia Miloudi

University M’HamedBougara of Boumerdès

编辑信件的主要联系方式.
Email: lamiloudi@univ-boumerdes.dz
阿尔及利亚, Boumerdès

Dalila Acheli

University M’HamedBougara of Boumerdès

Email: lamiloudi@univ-boumerdes.dz
阿尔及利亚, Boumerdès

Mohamed Kesraoui

University M’HamedBougara of Boumerdès

Email: lamiloudi@univ-boumerdes.dz
阿尔及利亚, Boumerdès

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017