Computable Numberings of Families of Infinite Sets


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We state the following results: the family of all infinite computably enumerable sets has no computable numbering; the family of all infinite \( {\varPi}_1^1 \) sets has no \( {\varPi}_1^1 \) -computable numbering; the family of all infinite \( {\varSigma}_2^1 \) sets has no \( {\varSigma}_2^1 \) -computable numbering. For k > 2, the existence of a \( {\varSigma}_k^1 \) -computable numbering for the family of all infinite \( {\varSigma}_k^1 \) sets leads to the inconsistency of ZF.

作者简介

M. Dorzhieva

Novosibirsk State University

编辑信件的主要联系方式.
Email: dm-3004@inbox.ru
俄罗斯联邦, ul. Pirogova 1, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019