Computable Numberings of Families of Infinite Sets
- Авторлар: Dorzhieva M.V.1
-
Мекемелер:
- Novosibirsk State University
- Шығарылым: Том 58, № 3 (2019)
- Беттер: 224-231
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234135
- DOI: https://doi.org/10.1007/s10469-019-09540-4
- ID: 234135
Дәйексөз келтіру
Аннотация
We state the following results: the family of all infinite computably enumerable sets has no computable numbering; the family of all infinite \( {\varPi}_1^1 \) sets has no \( {\varPi}_1^1 \) -computable numbering; the family of all infinite \( {\varSigma}_2^1 \) sets has no \( {\varSigma}_2^1 \) -computable numbering. For k > 2, the existence of a \( {\varSigma}_k^1 \) -computable numbering for the family of all infinite \( {\varSigma}_k^1 \) sets leads to the inconsistency of ZF.
Авторлар туралы
M. Dorzhieva
Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: dm-3004@inbox.ru
Ресей, ul. Pirogova 1, Novosibirsk, 630090
Қосымша файлдар
