Generating Triples of Involutions of Groups of Lie Type of Rank 2 Over Finite Fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For finite simple groups U5(2n), n > 1, U4(q), and S4(q), where q is a power of a prime p > 2, q − 1 ≠= 0(mod4), and q ≠= 3, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals 1, is equal to 5.

作者简介

Ya. Nuzhin

Siberian Federal University

编辑信件的主要联系方式.
Email: nuzhin2008@rambler.ru
俄罗斯联邦, pr. Svobodnyi 79, Krasnoyarsk, 660041

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019