Generating Triples of Involutions of Groups of Lie Type of Rank 2 Over Finite Fields
- 作者: Nuzhin Y.N.1
-
隶属关系:
- Siberian Federal University
- 期: 卷 58, 编号 1 (2019)
- 页面: 59-76
- 栏目: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234120
- DOI: https://doi.org/10.1007/s10469-019-09525-3
- ID: 234120
如何引用文章
详细
For finite simple groups U5(2n), n > 1, U4(q), and S4(q), where q is a power of a prime p > 2, q − 1 ≠= 0(mod4), and q ≠= 3, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals 1, is equal to 5.
作者简介
Ya. Nuzhin
Siberian Federal University
编辑信件的主要联系方式.
Email: nuzhin2008@rambler.ru
俄罗斯联邦, pr. Svobodnyi 79, Krasnoyarsk, 660041
补充文件
