Generating Triples of Involutions of Groups of Lie Type of Rank 2 Over Finite Fields
- Авторлар: Nuzhin Y.N.1
-
Мекемелер:
- Siberian Federal University
- Шығарылым: Том 58, № 1 (2019)
- Беттер: 59-76
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234120
- DOI: https://doi.org/10.1007/s10469-019-09525-3
- ID: 234120
Дәйексөз келтіру
Аннотация
For finite simple groups U5(2n), n > 1, U4(q), and S4(q), where q is a power of a prime p > 2, q − 1 ≠= 0(mod4), and q ≠= 3, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals 1, is equal to 5.
Негізгі сөздер
Авторлар туралы
Ya. Nuzhin
Siberian Federal University
Хат алмасуға жауапты Автор.
Email: nuzhin2008@rambler.ru
Ресей, pr. Svobodnyi 79, Krasnoyarsk, 660041
Қосымша файлдар
