Prime and Homogeneous Rings and Algebras


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let ℳ be a structure of a signature Σ. For any ordered tuple \( \overline{a}=\left({a}_1,\dots, {a}_{\mathrm{n}}\right) \) of elements of ℳ, \( {\mathrm{tp}}^{\mathcal{M}}\left(\overline{a}\right) \) denotes the set of formulas θ(x1, …, xn) of a first-order language over Σ with free variables x1, . . . , xn such that \( \mathcal{M}\left|=\theta \left({a}_1,\dots, {a}_n\right)\right. \). A structure ℳ is said to be strongly ω-homogeneous if, for any finite ordered tuples \( \overline{a} \) and \( \overline{b} \) of elements of ℳ, the coincidence of \( {\mathrm{tp}}^{\mathcal{M}}\left(\overline{a}\right) \) and \( {\mathrm{tp}}^{\mathrm{M}}\left(\overline{b}\right) \) implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure ℳ. A structure ℳ is said to be prime in its theory if it is elementarily embedded in every structure of the theory Th (ℳ). It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly ω-homogeneous.

Sobre autores

E. Timoshenko

Novosibirsk State Technical University

Autor responsável pela correspondência
Email: eitim45@gmail.com
Rússia, pr. Marksa 20, Novosibirsk, 630092

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019