Turing Degrees in Refinements of the Arithmetical Hierarchy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigate the problem of characterizing proper levels of the fine hierarchy (up to Turing equivalence). It is known that the fine hierarchy exhausts arithmetical sets and contains as a small fragment finite levels of Ershov hierarchies (relativized to ∅n, n < ω), which are known to be proper. Our main result is finding a least new (i.e., distinct from the levels of the relativized Ershov hierarchies) proper level. We also show that not all new levels are proper.

作者简介

V. Selivanov

Ershov Institute of Informatics Systems; Kazan (Volga Region) Federal University

编辑信件的主要联系方式.
Email: vseliv@iis.nsk.su
俄罗斯联邦, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090; ul. Kremlevskaya 18, Kazan, 420008

M. Yamaleev

Kazan (Volga Region) Federal University

Email: vseliv@iis.nsk.su
俄罗斯联邦, ul. Kremlevskaya 18, Kazan, 420008

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018