Turing Degrees in Refinements of the Arithmetical Hierarchy
- 作者: Selivanov V.L.1,2, Yamaleev M.M.2
-
隶属关系:
- Ershov Institute of Informatics Systems
- Kazan (Volga Region) Federal University
- 期: 卷 57, 编号 3 (2018)
- 页面: 222-236
- 栏目: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234090
- DOI: https://doi.org/10.1007/s10469-018-9495-4
- ID: 234090
如何引用文章
详细
We investigate the problem of characterizing proper levels of the fine hierarchy (up to Turing equivalence). It is known that the fine hierarchy exhausts arithmetical sets and contains as a small fragment finite levels of Ershov hierarchies (relativized to ∅n, n < ω), which are known to be proper. Our main result is finding a least new (i.e., distinct from the levels of the relativized Ershov hierarchies) proper level. We also show that not all new levels are proper.
作者简介
V. Selivanov
Ershov Institute of Informatics Systems; Kazan (Volga Region) Federal University
编辑信件的主要联系方式.
Email: vseliv@iis.nsk.su
俄罗斯联邦, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090; ul. Kremlevskaya 18, Kazan, 420008
M. Yamaleev
Kazan (Volga Region) Federal University
Email: vseliv@iis.nsk.su
俄罗斯联邦, ul. Kremlevskaya 18, Kazan, 420008
补充文件
