Turing Degrees in Refinements of the Arithmetical Hierarchy
- Autores: Selivanov V.L.1,2, Yamaleev M.M.2
-
Afiliações:
- Ershov Institute of Informatics Systems
- Kazan (Volga Region) Federal University
- Edição: Volume 57, Nº 3 (2018)
- Páginas: 222-236
- Seção: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234090
- DOI: https://doi.org/10.1007/s10469-018-9495-4
- ID: 234090
Citar
Resumo
We investigate the problem of characterizing proper levels of the fine hierarchy (up to Turing equivalence). It is known that the fine hierarchy exhausts arithmetical sets and contains as a small fragment finite levels of Ershov hierarchies (relativized to ∅n, n < ω), which are known to be proper. Our main result is finding a least new (i.e., distinct from the levels of the relativized Ershov hierarchies) proper level. We also show that not all new levels are proper.
Palavras-chave
Sobre autores
V. Selivanov
Ershov Institute of Informatics Systems; Kazan (Volga Region) Federal University
Autor responsável pela correspondência
Email: vseliv@iis.nsk.su
Rússia, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090; ul. Kremlevskaya 18, Kazan, 420008
M. Yamaleev
Kazan (Volga Region) Federal University
Email: vseliv@iis.nsk.su
Rússia, ul. Kremlevskaya 18, Kazan, 420008
Arquivos suplementares
