Automorphism Groups of Small Distance-Regular Graphs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider undirected graphs without loops and multiple edges. Previously, V. P. Burichenko and A. A. Makhnev [1] found intersection arrays of distance-regular locally cyclic graphs with the number of vertices at most 1000. It is shown that the automorphism group of a graph with intersection array {15, 12, 1; 1, 2, 15}, {35, 32, 1; 1, 2, 35}, {39, 36, 1; 1, 2, 39}, or {42, 39, 1; 1, 3, 42} (such a graph enters the above-mentioned list) acts intransitively on the set of its vertices.

作者简介

I. Belousov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: i_belousov@mail.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Ekaterinburg, 620990

A. Makhnev

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences

Email: i_belousov@mail.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Ekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2017