Automorphism Groups of Small Distance-Regular Graphs
- Авторы: Belousov I.N.1, Makhnev A.A.1
-
Учреждения:
- Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
- Выпуск: Том 56, № 4 (2017)
- Страницы: 261-268
- Раздел: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234042
- DOI: https://doi.org/10.1007/s10469-017-9447-4
- ID: 234042
Цитировать
Аннотация
We consider undirected graphs without loops and multiple edges. Previously, V. P. Burichenko and A. A. Makhnev [1] found intersection arrays of distance-regular locally cyclic graphs with the number of vertices at most 1000. It is shown that the automorphism group of a graph with intersection array {15, 12, 1; 1, 2, 15}, {35, 32, 1; 1, 2, 35}, {39, 36, 1; 1, 2, 39}, or {42, 39, 1; 1, 3, 42} (such a graph enters the above-mentioned list) acts intransitively on the set of its vertices.
Ключевые слова
Об авторах
I. Belousov
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: i_belousov@mail.ru
Россия, ul. S. Kovalevskoi 16, Ekaterinburg, 620990
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Email: i_belousov@mail.ru
Россия, ul. S. Kovalevskoi 16, Ekaterinburg, 620990
Дополнительные файлы
