Comparison of Results of Long-Term Measurements of Stratospheric and Tropospheric Column NO2 Contents using Satellite Ozone Monitoring Instrument to Results of Ground-Based Measurements

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Results of measurements of NO2 contents in vertical columns of the stratosphere and troposphere using the Ozone Monitoring Instrument aboard the EOS–Aura satellite in 2004–2020 are compared to results of ground-based measurements at stations of the Network for the Detection of Atmospheric Composition Change (NDACC), first of all, to results of measurements at the Zvenigorod Scientific Station (ZSS) of the A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences. The comparison of satellite data to the ZSS data is done using the both products of satellite measurements—the stratospheric and tropospheric column NO2 contents. When comparing the data of OMI and ground-based measurements at other stations, satellite values of the NO2 content in the stratospheric column are compared to values of the total column NO2 content obtained in ground-based measurements. Correspondence between the results of satellite and ground-based measurements is characterized by the magnitude of the difference between them, linear correlation coefficients and regression coefficients. The difference has a noticeable seasonal variation. Correlation and regression coefficients depend significantly on the season. Characteristic patterns of correlation coefficient changes with latitude as well as features of correlation between satellite and ground-based data in the polar and middle latitudes of the southern hemisphere in spring have been revealed. For some stations, the dependence of the quantitative characteristics of the correspondence between the results of satellite and ground-based measurements on cloudiness has been revealed. Under cloudless conditions at the ZSS, a weakening of the correlation between satellite and ground-based values of the stratospheric NO2 content and an increase in the correlation between the values of the tropospheric NO2 content is noted. The dependence of the correspondence characteristics between the data of satellite and ground-based measurements on the level of pollution of the lower troposphere with nitrogen oxides has been revealed. The correlation between the values of the tropospheric NO2 content in the vicinity of the ZSS under strong pollution increases, while the correlation between the values of the stratospheric NO2 content decreases. Based on the results of the comparison of satellite and ground-based data, estimates of the upper threshold values of the tropospheric NO2 content at different stations is obtained. The lowest values have been obtained for polar stations, and the highest value has been obtained for the ZSS which is most susceptible to anthropogenic pollution due to its proximity to the Moscow megapolis.

Негізгі сөздер

Авторлар туралы

A. Gruzdev

Obukhov Institute of Atmospheric Physics RAS

Хат алмасуға жауапты Автор.
Email: a.n.gruzdev@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., 3,

A. Elokhov

Obukhov Institute of Atmospheric Physics RAS

Email: a.n.gruzdev@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., 3,

Әдебиет тізімі

  1. Brasseur G.P., Solomon S. Aeronomy of the middle atmosphere. Dordrecht, the Netherlands: Springer. 2005. 644. P.
  2. Seinfeld J.H., Pandis S.N. Atmospheric chemistry and physics: from air pollution to climate change. Hoboken, New Jersey, USA: John Wiley & Sons. 2006. 1225 p.
  3. Hu Y., Liu C., Chen R., Kan H., Zhou M., Zhao B. Associations between total mortality and personal exposure to outdoor-originated NO2 in 271 Chinese cities // Atmos. Environ. 2021. V. 246. 118170.
  4. Boersma K.F., Jakob D.J., Eskes H.J., Pinder R.W., Wang J., van der A R.J. Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space // J. Geophys. Res. 2008. V. 113. № D16S26. https://doi.org/10.1029/2007JD008816
  5. Celarier E.A., Brinksma E.J., Gleason J.F., Veefkind J.P., Cede A., Herman J.R., Ionov D., Goutail F., Pommereau J.P., Lambert J.C., van Roozendael M., Pinardi G., Wittrock F., Schonhardt A., Richter A., Ibrahim O.W., Wagner T., Bojkov B. Mount G., Spinei E., Chen C. M., Pongetti T.J., Sander S.P., Bucsela E.J., Wenig M.O., Swart D.P.J., Volten H., Kroon M., Levelt P.F. Validation of Ozone Monitoring Instrument nitrogen dioxide columns // J. Geophys. Res. 2008. V. 113. № D15S15. https://doi.org/10.1029/2007JD008908
  6. Ionov D.V., Timofeyev Y.M., Sinyakov V.P., Semenov V.K., Goutail F., Pommereau J.-P., Bucsela E.J., Celarier E.A., Kroon M. Ground-based validation of EOS-Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) // J. Geophys. Res. 2008. V. 113. D15S08. https://doi.org/10.1029/2007JD008659
  7. Irie H., Kanaya Y., Akimoto H., Tanimoto H., Wang Z., Gleason J.F., Bucsela E.J. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006: Mount Tai Experiment 2006 // Atmos. Chem. Phys. 2008. V. 8. P. 6577–6586.
  8. Kramer L.J., Leigh R.J., Remedios J.J., Monks P.S. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area // J. Geophys. Res. 2008. V. 113. D16S39.
  9. Wenig M.O., Cede A.M., Bucsela E.J., Celarier E.A., Boersma K.F., Veefkind J.P., Brinksma E.J., Gleason J.F., and Herman J.R. Validation of OMI tropospheric NO2 column densities using direct-Sun mode Brewer measurements at NASA Goddard Space Flight Center // J. Geophys. Res., 2008, V. 113. D16S45. https://doi.org/10.1029/2007JD008988
  10. Груздев А.Н., Елохов А.С. Валидация результатов измерений содержания NO2 в вертикальном столбе атмосферы с помощью прибора OMI с борта спутника EOS-Aura по данным наземных измерений на Звенигородской научной станции // Изв. РАН. Физика атмосферы и океана. 2009. Т. 45. № 4. С. 477–488.
  11. Gruzdev A.N., Elokhov A.S. Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia // Internat. J. Remote Sens. 2010. V. 31. № 2. P. 497–511. https://doi.org/10.1080/01431160902893527
  12. Bucsela E.J., Krotkov N.A., Celarier E.A., Lamsal L.N., Swartz W.H., Bhartia P.K., Boersma F., Veefkind J.P., Gleason J.F., Pickering K.E. A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI // J. Meas. Techn. 2013. V. 6. P. 2607–2626.
  13. Levelt P.F., Joiner J., Tamminen J. et al. The Ozone Monitoring Instrument: overview of 14 years in space // Atmos. Chem. Phys. 2018. V. 18. P. 5600–5745.
  14. Груздев А.Н., Елохов А.С. Новые результаты валидации данных измерений содержания NO2 с помощью прибора OMI на основе данных измерений на Звенигородской научной станции // Исслед. Земли из космоса. 2013. № 1. С. 16–27. https://doi.org/10.7868/S0205961412060024
  15. Gruzdev A.N., Elokhov A.S. Comparison of the results of ground-based and satellite (OMI) measurements of the NO2 contents in the stratosphere and troposphere over Zvenigorod: Sensitivity to cloud cover and tropospheric pollution // Proceed. SPIE. 2021. V. 11 916. 1 191 628. https://doi.org/10.1117/12.2601814
  16. Johnston P.V., McKenzie R.L. NO2 observations at 45oS during the decreasing phase of solar cycle 21, from 1980 to 1987 // J. Geophys. Res. V. 94. № D3. P. 3473–3486.
  17. Елохов А.С., Груздев А.Н. Измерения общего содержания и вертикального распределения NO2 на Звенигородской научной станции // Изв. РАН. Физика атмосферы и океана. 2000. Т. 36. № 6. С. 831–846.
  18. Vaughan G., Quinn P.T., Green A.C., Bean J., Roscoe H.K., van Roozendael M., Goutail F. SAOZ measurements of NO2 at Aberystwyth // J. Environ. Monit. 2006. V. 8. P. 353–361. https://doi.org/10.1039/b511482a
  19. Gruzdev A.N., Elokhov A.S. Variability of stratospheric and tropospheric nitrogen dioxide observed by visible spectrophotometer at Zvenigorod, Russia // Internat. J. Remote Sens. 2011. V. 32. № 11. P. 3115–3127. https://doi.org/10.1080/01431161.2010.541524
  20. Hendrick F., Barret B., Van Roozendael M., Boesch H., Butz A., De Mazière M., Goutail F., Hermans C., Lambert J.-C., Pfeilsticker K., Pommereau J.-P. Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons // Atmos. Chem. Phys. 2004. V. 4. № 8. P. 2091–2106.
  21. Vandaele A.C., Hermans C., Simon M., Carleer M., Colin R., Fally S., Mérienne M.-F., Jenouvrier A., Coquart B. Measurements of the NO2 absorption cross section from 42,000 cm-1 to 10000 cm–1 (238–1000 nm) at 220 and 294 K // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59. № 3–5. P. 171–184.
  22. Harder J.W., Brault J.W., Johnston P.V., Mount G.H. Temperature dependent NO2 cross sections at high spectral resolution // J. Geophys. Res. 1997. V. 102. № D3. P. 3861–3879.
  23. Груздев А.Н. Елохов А.С. Изменения общего содержания и вертикального распределения NO2 по результатам 30-летних измерений на Звенигородской научной станции ИФА им. А.М. Обухова РАН // Известия РАН. Физика атмосферы и океана. 2021. Т. 57. № 1. С. 99–112.
  24. Platt U., Stutz J. Differential Optical Absorption Spectroscopy (DOAS), Principle and Applications / Berlin: Springer Verlag/ 2008. 597 p. ISBN 978-3-540-21193-8. https://doi.org/10.1007/978-3-540-75776-4
  25. Груздев А.Н. Широтная зависимость вариаций стратосферного содержания NO2 // Изв. РАН. Физика атмосферы и океана. 2008. Т. 44. № 3. С. 345–359.


Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>