Internal Gravity Waves Excited by Non-Stationary Disturbance Sources in a Stratified Ocean with Shear Flows
- Authors: Bulatov V.V.1, Vladimirov I.Y.2
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the RAS
- Shirshov Oceanology Institute of the RAS
- Issue: Vol 60, No 5 (2024)
- Pages: 567-581
- Section: Articles
- URL: https://journals.rcsi.science/0002-3515/article/view/282056
- DOI: https://doi.org/10.31857/S0002351524050012
- EDN: https://elibrary.ru/HYUEEQ
- ID: 282056
Cite item
Abstract
The problem of constructing solutions that describe the generation of internal gravity waves by a localized oscillating source of disturbances in a finite layer of a stratified medium with background shear flows is considered. To construct analytical solutions in a linear approximation, model representations of the buoyancy frequency and the distribution of shear flow in depth were used. Under the Miles-Howard assumption, an integral representation of the solution in the form of sums of wave modes was obtained and, using the stationary phase method, an asymptotic representation of the solution for each mode was constructed. The results of calculations of dispersion dependences and phase structures of wave fields for various modes of wave generation are presented. The spatial transformation of the phase structures of wave fields has been studied depending on the frequency of oscillations of the source of disturbances and the main characteristics of shear flows.
About the authors
V. V. Bulatov
Ishlinsky Institute for Problems in Mechanics of the RAS
Author for correspondence.
Email: internalwave@mail.ru
Russian Federation, 101/1, Vernadsky Ave., Moscow, 119526
I. Yu. Vladimirov
Shirshov Oceanology Institute of the RAS
Email: internalwave@mail.ru
Russian Federation, 36, Nahimovsky Ave., Moscow, 117997
References
- Арнольд В.И. Волновые фронты и топология кривых. М.: Фазис, 2002. 120 с.
- Булатов В.В., Владимиров Ю.В. Волны в стратифици-рованных средах. М.: Наука, 2015. 735 с.
- Булатов В.В., Владимиров Ю.В. Внутренние грави-тационные волны в океане с разнонаправленными сдвиговыми течениями // Изв. РАН. ФАО. 2020. Т. 56. № 1. С. 104–111.
- Булатов В.В., Владимиров Ю.В., Владимиров И.Ю. Внутренние гравитационные волны от осциллирующего источника возмущений в океане // Изв. РАН.ФАО. 2021.Т. 57. № 3. С. 362–373.
- Лайтхил Дж. Волны в жидкостях. М.: Мир, 1981. 598 с.
- Миропольский Ю.З. Динамика внутренних гравитационных волн в океане. Л.: Гидрометеоиздат, 1981. 302 с.
- Свиркунов П.Н., Калашник М.В. Фазовые картины диспергирующих волн от движущихся локализованных источников // УФН. 2014. Т. 184. № 1. C. 89–100.
- Сидняев Н.И. Теоретические исследования гидродинамики при подводном взрыве точечного источника // Инженерный журнал: наука и инновации. 2013. № 2. URL: https://engjournal.ru/catalog/appmath/hidden/614.html
- Слепышев А.А., Лактионова Н.В. Вертикальный перенос импульса внутренними волнами в сдвиговом потоке // Изв. РАН. ФАО. 2019. Т. 55. № 6. С. 194–200.
- Alias A., Grimshaw R.H.J., Khusnutdinova K.R. Coupled Ostrovsky equations for internal waves in a shear flow // Physics Fluids, 2014. V. 26, P. 126603.
- Basovich A.Ya., Tsimring L.Sh. Internal waves in a horizontally inhomogeneous flow // J. Fluid Mech., 1984. V. 142 P. 233–249.
- Borovikov V.A. Uniform stationary phase method. IEE electromagnetic waves. Series 40. London: Institution of Electrical Engineers, 1994. 233 p.
- Bouruet-Aubertot P.I., Thorpe S.A. Numerical experiments of internal gravity waves an accelerating shear flow // Dyn. Atm. Oceans. 1999. V. 29. P. 41–63.
- Bretherton F.P. The propagation of groups of internal gravity waves in a shear flow // Quart. J. Royal. Metereol. Soc. 1966. V. 92. P. 466–480.
- Broutman D., Brandt L., Rottman J., Taylor C. A WKB derivation for internal waves generated by a horizontally moving body in a thermocline // Wave Motion, 2021. V. 105. P. 102759.
- Broutman D., Rottman J. A simplified Fourier method for computing the internal wave field generated by an oscillating source in a horizontally moving depth-dependent background // Physics Fluids. 2004. V. 16. P. 3682.
- Bulatov V.V., Vladimirov Yu.V. Dynamics of internal gravity waves in the ocean with shear flows // Russian J. Earth Sciences. 2020. V. 20. ES4004.
- Bulatov V., Vladimirov Yu. Analytical approximations of dispersion relations for internal gravity waves equation with shear flows // Symmetry. 2020. V. 12(11). P. 1865.
- Carpenter J.R., Balmforth N. J., Lawrence G. A. Identifying unstable modes in stratified shear layers. // Phys. Fluids. 2010. 22. P. 054104.
- Churilov S. On the stability analysis of sharply stratified shear flows // Ocean Dynamics. 2018. 68. P. 867–884.
- Fabrikant A.L., Stepanyants Yu.A. Propagation of waves in shear flows. World Scientific Publishing, 1998. 304 p.
- Fraternale F., Domenicale L, Staffilan G.,Tordella D. Internal waves in sheared flows: lower bound of the vorticity growth and propagation discontinuities in the parameter space // Phys. Rev. 2018. V 97. № 6. P. 063102
- Frey D.I., Novigatsky A.N., Kravchishina M.D., Morozov E.G. Water structure and currents in the Bear Island Trough in July-August 2017 // Russian J. Earth Sciences. 2017. V. 17. ES3003.
- Gavrileva A.A., Gubarev Yu.G., Lebedev M.P. The Miles theorem and the first boundary value problem for the Taylor–Goldstein equation // J. Applied and Industrial Mathematics. 2019. 13(3). P. 460–471.
- Gnevyshev V., Badulin S. Wave patterns of gravity–capillary waves from moving localized sources // Fluids. 2020. V. 5. P. 219.
- Hirota M., Morrison P.J. Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows // Physics Letters A. 2016. 380(21). P. 1856–1860.
- Howland C.J., Taylor J.R., Caulfield C.P. Shear-induces breaking of internal gravity waves // J. Fluid Mechanics, 2021. V. 921. A24.
- Klimchenko E.E., Frey D.I., Morozov E.G. Tidal internal waves in the Bransfield Strait, Antarctica // Russ. J. Earth. Science. 2020. V. 20. ES2006.
- Kravtsov Yu., Orlov Yu. Caustics, catastrophes and wave fields. Berlin: Springer. 1999. 210 p.
- Miles J.W. On the stability of heterogeneous shear flow // J. Fluid Mech. 1961. V. 10(4). Р. 495–509.
- Meunier P., Dizиs S., Redekopp L., Spedding G. Internal waves generated by a stratified wake: experiment and theory // J. Fluid Mech., 2018. V. 846. P. 752–788
- Morozov E. G. Oceanic internal tides. Observations, analysis and modeling. Berlin: Springer, 2018. 317 p.
- Morozov E.G., Parrilla-Barrera G., Velarde M.G., Scherbinin A.D. The Straits of Gibraltar and Kara Gates: a comparison of internal tides // Oceanologica Acta. 2003. V. 26(3). P. 231–241.
- Morozov E.G., Tarakanov R.Yu., Frey D.I., Demidova T.A., Makarenko N.I. Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge // Journal of Oceanography. 2018. V. 74(2). P. 147–167.
- Morozov E.G., Tarakanov R.Yu., Frey D.I. Bottom gravity currents and overflow in deep channels of the Atlantic ocean. Springer Nature Switzerland AG, 2021. 483 p.
- Pedlosky J. Waves in the ocean and atmosphere: introduction to wave dynamics. Berlin-Heildelberg: Springer, 2010. 260 p.
- Shugan I., Chen Y.-Y. Kinematics of the ship’s wake in the presence of a shear flow // J. Mar. Sci. Eng. 2021. V. 9. P. 7.
- Slepyshev A.A., Vorotnikov D.I. Generation of vertical fine structure by internal waves in a shear flows // Open J. Fluid Mechanics. 2019. V. 9. P. 140–157.
- Sutherland B.R. Internal gravity waves. Cambridge: Cambridge University Press, 2010. 394 p.
- Vlasenko V., Stashchuk N., Hutter K. Baroclinic tides. N.Y.: Cambridge University Press, 2005. 372 р.
- Velarde M.G., Tarakanov R.Yu., Marchenko A.V. (Eds.). The ocean in motion. Springer Oceanography. Springer International Publishing AG, 2018. 625 p.
- Young W.R., Phines P., Garret C.J.R. Shear flows dispersion, internal waves and horizontal mixing // J. Phys. Oceanography. 1982. V. 12(6). P. 515–527.
Supplementary files
