On the Mechanism of Sulfur Dioxide Oxidation in Cloud Droplets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Data from field experiments on the dynamics of SO2 oxidation in cloud droplets are presented. The rapid oxidation of SO2 by molecular oxygen observed in experiments is attributed here to the catalytic action of a pair of manganese and iron ions in droplets. Their inhomogeneous effect by the drop-size distribution, attributed in experiments only to the leaching of ions of these metals from coarse particles of mineral dust is also due to the transition of the oxidation reaction into a branched mode. The results obtained indicate that the branched regime of catalytic oxidation of SO2 detected in cloud droplets should be considered as a new and significant source of sulfates in the atmosphere. This process must be taken into account when considering both the budget of sulfates in the global atmosphere and their impact on the climate.

About the authors

A. N. Yermakov

Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: ezmakr2010@yandex.ru
Russia, 119334, Moscow, Leninskii pr. 38, k. 2

A. E. Aloyan

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: ezmakr2010@yandex.ru
Russia, 119333, Moscow, ul. Gubkina 8,

V. O. Arutyunyan

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences

Email: ezmakr2010@yandex.ru
Russia, 119333, Moscow, ul. Gubkina 8,

G. B. Pronchev

Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: polclouds@yandex.ru
Russia, 119334, Moscow, Leninskii pr. 38, k. 2

References

  1. Бердников В.М., Бажин Н.М. Окислительно-восстановительные потенциалы некоторых неорганических радикалов в водных растворах // Журн. физ. химии. 1970. Т. 44. С. 712–716.
  2. Ерёмина И.Д., Алоян А.Е., Арутюнян В.О., Ларин И.К., Чубарова Н.Е., Ермаков А.Н. Гидрокарбонаты в атмосферных осадках в Москве: данные мониторинга и их анализ // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 3. С. 379–388.
  3. Ермаков А.Н. О влиянии ионной силы на кинетику окисления сульфита в присутствии ионов марганца // Кинетика и катализ. 2022. Т. 63. № 2. С. 178–186.
  4. Ермаков А.Н., Алоян А.Е., Арутюнян В.О. Динамика образования сульфатов в атмосферной дымке // Оптика атмосферы и океана. 2023. Т. 36. № 2. С. 148–153.
  5. Alexander B., Park R.J., Jacob D.J. et al. Transition metal-catalyzed oxidation of atmospheric sulfur: global implications for the sulfur budget // J. Geophys. Res. Atmos. 2009. V. 114. D02309.
  6. Andreae M.O., Jones C.D., Cox P.M. Strong present-day cooling implies a hot future // Nature. 2005. V. 435. № 7046. P. 1187–1190.
  7. Angle K.J., Neal E.E., Grassian V.H. Enhanced rates of transition-metal-ion-catalyzed oxidation of S(IV) in aqueous aerosols: Insights into sulfate aerosol formation in the atmosphere // Environ. Sci. Technol. 2021. V. 55. №. 15. P. 10291–10299.
  8. Barrie L.A., Georgii H.W. An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions // Atmos. Environ. 1976. V. 10. № 9. P. 743–749.
  9. Behra P., Sigg L. Evidence for redox cycling of iron in atmospheric water droplets // Nature. 1990. V. 344. № 6265. P. 419–421.
  10. Berglen T., Berntsen T., Isaksen I., Sundet J. A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle. J. Geophys. Res. 2004. V. 109. № 19. D19310.
  11. Berglund J., Fronaeus S., Elding L.I. Kinetics and mechanism for manganese-catalyzed oxidation of sulfur (IV) by oxygen in aqueous solution // Inorg. Chem. 1993. V. 32. №. 21. P. 4527–4537.
  12. Betterton E.A., Hoffman M.R. Oxidation of aqueous SO2 by peroxomonosulfate // J. Phys. Chem. 1988. V. 92. № 21. P. 5962–5965.
  13. Brandt Ch., Elding L.I. Role of chromium and vanadium in the atmospheric oxidation of sulfur(IV) // Atmos. Environ. 1998. V. 32. № 4. P. 797–800.
  14. Cheng Y.F., Zheng G., Way Ch., Mu Q. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China // Sci. Adv. 2016. V. 2. № 12. e1601530.
  15. Coughanowr D.R., Krause F.E. The reaction of SO2 and O2 in aqueous solutions of MnSO4 // Ind. Eng. Chem. Fund. 1965. V. 4. № 1. P. 61–66.
  16. Ermakov A.N., Purmal A.P. Catalysis of oxidation by manganese ions // Kinet. Catal. 2002. V. 43. № 2. P. 249–260.
  17. Feichter J., Kjellstrom E., Rodhe H. et al., Simulation of the tropospheric sulfur cycle in a global climate model // Atmos. Environ. 1996. V. 30. № 10–11. P. 1693–1707.
  18. Fomba K.W., Müller K., van Pinxteren D., Herrmann H. Aerosol size-resolved trace metal composition in remote northern tropical Atlantic marine environment: case study Cape Verde Islands // Atmos. Chem. Phys. Discuss. 2013. V. 13. № 9. P. 4801–4814.
  19. Grell G.A., Peckham S., Schmitz R. et al. Fully coupled “online” chemistry within the WRF model. // Atmos. Environ. 2005. V. 39. № 37. P. 6957–6975.
  20. Grgić I., Hudnik V., Bizjak M., Levec J. Aqueous S(IV) oxidation—I. Catalytic effects of some metal ions // Atmos. Environ. 1991. V. 25A. № 8. P. 1591–1597.
  21. Gröner E., Hoppe P. Automated ion imaging with the NanoSIMS ion microprobe // Appl. Surf. Sci. 2006. V. 252. № 19. P. 7148–7151.
  22. Harris E., Sinha B., Hoppe P. et al. Sulfur isotope fractionation during oxidation of sulfur dioxide: Gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis // Atmos. Chem. Phys. 2012a. V. 12. № 1. P. 407–423.
  23. Harris E., Sinha B., Foley S. et al. Sulfur isotope fractionation during heterogeneous oxidation of SO2 on mineral dust // Atmos. Chem. Phys. 2012b. V. 12. P. 4867–4884.
  24. Harris E., Sinha B., van Pinxteren D. et al. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2 // Science. 2013. V. 340. № 6133. P. 727–730.
  25. Herrmann H., Ervens B., Jacobi H.-W. et al. CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry // J. Atmos. Chem. 2000. V. 36. P. 231–284.
  26. Hung H.-M., Hsu M.-N., Hoffmann M.R. Quantification of SO2 oxidation on Interfacial Surfaces of Acidic Micro-Droplets: Implication for Ambient Sulfate Formation // Environ. Sci. Technol. 2018. V. 52. № 16. P. 9079–9086.
  27. Ibusuki T., Takeuchi K. Sulfur dioxide oxidation by oxygen catalyzed by mixtures of manganese(II) and iron(III) in aqueous solutions at environmental reaction conditions // Atmos. Environ. 1987. V. 21. № 7. P. 1555–1560.
  28. Kaplan D.J., Himmelblau D.M., Kanaoka C. Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst // Atmos. Environ. 1981. V. 15. № 5. P. 763–773.
  29. Kulmala M., Pirjola U., Mäkelä U. Stable sulphate clusters as a source of new atmospheric particles // Nature. 2000. V. 404. № 6773. P. 66–69.
  30. Laj P., Fuzzi S., Facchini M.C. et al. Cloud processing of soluble gases // Atmos. Environ. 1997. V. 31. № 16. P. 2589–2598.
  31. Lee J.K., Samanta D., Nam H.G., Zare R.N. Micrometer-sized water droplets induce spontaneous reduction // J. Am. Chem. Soc. 2019. V. 141. № 27. P. 10 585–10 589.
  32. Liu P., Ye C., Xue Ch, Zhang Ch., Mu Yu., Sun X. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry // Atmos. Chem. Phys. 2020. V. 20. № 7. P. 4153–4165.
  33. Liu T., Clegg S.L., Abbatt J.P.D. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 3. P. 1354–1359.
  34. McCabe J.R., Savarino J., Alexander B. et al. Isotopic constraints on non-photochemical sulfate production in the Arctic winter // Geophys. Res. Lett. 2006. V. 33. № 5. L05810.
  35. Martin L.R., Good T.W. Catalyzed oxidation of sulfur dioxide in solution: the iron-manganese synergism // Atmos. Environ. 1991. V. 25A. № 10. P. 2395–2399.
  36. Mauldin R.L., Mandronich S., Flocke S.J. et al. New insights on OH: Measurements around and in clouds // Geophys. Res. Lett. 1997. V. 24. № 23. P. 3033–3036.
  37. Pozzoli L., Bey I., Rast S., Schultz M.G., Stier P., Feichter J. Trace gas and aerosol interactions in the fully coupled model of aerosol–chemistry–climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment // J. Geophys. Res. 2008. V. 113. D07308.
  38. Sedlak D.L., Hoigne J., David M.M. et al. The cloudwater chemistry of iron and copper at Great Dun Fell, U.K. Atmos. Environ. 1997. V. 31. № 16. P. 2515–2526.
  39. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. John Wiley & Sons. Hoboken: New Jersey USA, 2016. 1152 p.
  40. Tilgner A., Bräuer P., Wolke R., Herrmann H. Modelling multiphase chemistry in deliquescent aerosols and clouds using CAPRAM3.0i // J. Atmos. Chem. 2013. V. 70. № 3. P. 221–256.
  41. van Eldik R., Coichev N., Reddy K.B., Gerhard A. Metal ion catalyzed autoxidation of sulfur(IV)-Oxides: Redox cycling of metal ions induced by sulfite // Berichte der Bunsengesellschaft für physikalische Chemie. 1992. V. 96. № 3. P. 478–481.
  42. Wang G.H. Zhang R.Y., Gomes M.E. et al. Persistent sulfate formation from London Fog to Chinese haze // Proc. Natl. Acad. Sci. USA. 2016. V. 113. № 48. P. 13 630–13 635.
  43. Warneck P., Mirabel P., Salmon G.A. et al. Review of the activities and achievements of the EUROTRAC subproject HALIPP (Ed. P. Warneck). Heterogeneous and liquid phase processes. Springer: Berlin Heidelberg, 1996. P. 7.
  44. Winterholler B., Hoppe P., Foley S., Andreae M.O., Sulfur isotope ratio measurements of individual sulfate particles by NanoSIMS. Int. J. Mass Spectrom. 2008. V. 272. № 1. P. 63–77.
  45. Xie Y.Z., Liu Z.R., Wen T.X. et al. Characteristics of chemical composition and seasonal variations of PM2.5 in Shijiazhuang, China: impact of primary emissions and secondary formation // Sci. Total Environ. 2019. V. 677. P. 215–229.
  46. Zhang H., Xu Y., Jia L. A chamber study of catalytic oxidation of SO2 by M2+/Fe3+ in aerosol water // Atmos. Environ. 2021. V. 245. 118019.
  47. Zheng G.J., Duan F.K., Su H. et al. Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions // Atmos. Chem. Phys. 2015. V. 15. № 6. P. 2969–2983.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (48KB)
3.

Download (31KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies