The role of Regional Atmospheric Circulation in Interannual Variability of the Ocean Heat Advection in the Nordic Seas

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

More than 90% of oceanic heat enters the Arctic Ocean with the Norwegian Current. In this paper we examine the mechanisms of variability of the oceanic heat flux in the Norwegian Current (across the Svinoy section in the southern Norwegian Sea) in 1993–2019. GLORYS oceanic reanalysis with a spatial resolution of 1/12° is used. It is found that the variability of oceanic heat flux is associated with that of water transport, which, in turn, is associated with variability of the sea level gradient across the Norwegian Current. It is shown that an increase in water transport of the Norwegian Current is a result of a decrease of the atmospheric pressure over the central part of the Norwegian Sea. The latter intensifies the southwesterly winds along the Scandinavian Peninsula. The sea level gradients across the Norwegian Current, formed by the winds, are primarily associated with Ekman pumping towards the coast, as well as with the wind stress curl. Both have a significant impact on the variability of water transport through the section. Another factor is variability of the steric sea level gradient, which significantly affects the water transport during the period of a rapid temperature rise of in the Norwegian Current (1995–2005).

About the authors

D. A Iakovleva

St. Petersburg State University, SPbSU; Nansen International Environmental and Remote Sensing Centre

Author for correspondence.
Email: d.iakovleva@spbu.ru
Russian, 199034, St. Petersburg, Universitetskaya nab., 7/9; Russia, 199034, St. Petersburg, 14 Line Vasilievsky Island, 7

I. L. Bashmachnikov

St. Petersburg State University, SPbSU; Nansen International Environmental and Remote Sensing Centre

Email: d.iakovleva@spbu.ru
Russian, 199034, St. Petersburg, Universitetskaya nab., 7/9; Russia, 199034, St. Petersburg, 14 Line Vasilievsky Island, 7

References

  1. Башмачников И.Л., Юрова А.Ю., Бобылев Л.П., Весман А.В. Сезонная и межгодовая изменчивость потоков тепла в районе Баренцева моря // Известия Российской академии наук. Физика атмосферы и океана. 2018. Т. 54. №. 2. С. 1–11.
  2. Кузнецова Д.А., Башмачников И.Л. О механизмах изменчивости Атлантической меридиональной океанической циркуляции (АМОЦ) // Океанология. 2021. Т. 61. № 6. С. 843–855. https://doi.org/10.31857/S0030157421060071
  3. Лебедев К.В., Филюшкин Б.Н., Кожелупова Н.Г. Водообмен Полярных морей с Атлантическим и Северным Ледовитым океанами на основе наблюдений Арго // Океанологические исследования. 2019. Т. 47. № 2. С. 183–197.
  4. Яковлева Д.А., Башмачников И.Л., Кузнецова Д.А. Влияние Атлантической меридиональной океанической циркуляции на температуру верхнего слоя Северной Атлантики и атлантического сектора Северного Ледовитого океана // Океанология. 2023. Т. 63. № 2. С. 173–181.
  5. Bashmachnikov I.L., Raj R.P., Golubkin P., Kozlov I.E. Heat transport by mesoscale eddies in the Norwegian and Greenland seas // J. Geophysical Research: Oceans. 2023. P. e2022JC018987. https://doi.org/10.1029/2022JC018987
  6. Beszczynska-Moller A., Woodgate R.A., Lee C. et al. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean // Oceanography. 2011. V. 24. № 3. P. 82–99.
  7. Chen X., Tung K.K. Global surface warming enhanced by weak Atlantic overturning circulation // Nature. 2018. V. 559. № 7714. P. 387–391.
  8. Dee D.P., Uppala S.M., Simmons A.J. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system // Quarterly J. royal meteorological society. 2011. V. 137. № 656. P. 553–597.
  9. Hansen B., Østerhus S., Turrell W.R. et al. The inflow of Atlantic water, heat, and salt to the nordic seas across the Greenland–Scotland ridge // Arctic–subarctic ocean fluxes: Defining the role of the northern seas in climate. 2008. P. 15–43.
  10. Hansen B., Larsen K.M.H., Hátún H. et al. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993–2013 // Ocean Science. 2015. V. 11. №. 5. P. 743–757.
  11. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Quarterly J. Royal Meteorological Society. 2020. V. 146. № 730. P. 1999–2049.
  12. Latarius K., Quadfasel D. Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets // Deep Sea Research Part I: Oceanographic Research Papers. 2016. V. 114. P. 23–42.
  13. Mork K.A., Blindheim J. Variations in the Atlantic inflow to the Nordic Seas, 1955–1996 // Deep Sea Research Part I: Oceanographic Research Papers. 2000. V. 47. № 6. P. 1035–1057.
  14. Orvik K.A. Long-Term Moored Current and Temperature Measurements of the Atlantic Inflow Into the Nordic Seas in the Norwegian Atlantic Current; 1995–2020 // Geophysical Research Letters. 2022. V. 49. № 3. P. e2021GL096427.
  15. Orvik K.A., Skagseth Ø. The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic // Geophysical Research Letters. 2003. V. 30. №. 17.
  16. Orvik K.A., Skagseth Ø., Mork M. Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999 // Deep Sea Research Part I: Oceanographic Research Papers. 2001. V. 48. № 4. P. 937–957.
  17. Raj R.P., Nilsen J.Ø., Johannessen J.A. et al. Quantifying Atlantic Water transport to the Nordic Seas by remote sensing // Remote Sensing of Environment. 2018. V. 216. P. 758–769.
  18. Schauer U, Fahrbach E., Osterhus S., Rohardt G. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements // J. Geophysical Research: Oceans. 2004. V. 109. № C6.
  19. Skagseth Ø. Monthly to annual variability of the Norwegian Atlantic slope current: Connection between the northern North Atlantic and the Norwegian Sea // Deep Sea Research Part I: Oceanographic Research Papers. 2004. V. 51. № 3. P. 349–366.
  20. Tsubouchi T., Våge K., Hansen B. et al. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016 // Nature Climate Change. 2021. V. 11. № 1. P. 21–26.
  21. Vesman A.V., Bashmachnikov I.L., Golubkin P.A., Raj R.P. The coherence of the oceanic heat transport through the Nordic seas: oceanic heat budget and interannual variability // Russian J. Earth Sciences. 2023. P. 1–24.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (501KB)
3.

Download (709KB)
4.

Download (405KB)
5.

Download (1MB)
6.

Download (374KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies