The Effect of Global Warming on the Atmospheric Lifetime of Odd Oxygen

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Data on the effect of global warming on the atmospheric lifetime of odd oxygen, Ox. The results obtained characterize the effect at latitude 50°C. in the altitude range of 15–55 km in January–June 2000–2100s, the data for calculations were obtained using the interactive radiation-chemical two-dimensional SOCRATES model, with which the total rate of Ox death in the Ox, HOx, NOx, ClOx and BrOx catalytic cycles, as well as the concentration of Ox equal to the sum of the concentrations of O3, O(3P) and O(1D) for the above conditions, which are necessary for calculating the lifetime of Ox, were preliminarily calculated. Scenarios of the Intergovernmental Panel on Climate Change (IPCC) were used as initial conditions for calculations using the SOCRATES model RCP 4.5 and RCP 6.0 for the above conditions.

About the authors

I. K. Larin

Talroze Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: iklarin@narod.ru
Russia, 119334, Moscow, Leninskii pr., 38, bild. 2

References

  1. Гущин Г.П. Дис. канд. физ.-мат. наук. Л.: Главная геофизическая обсерватория, 1968.
  2. Brasseur G.P., Solomon S. Aeronomy of the Middle Atmosphere. Dordrecht. Springer, 2005. P. 644.
  3. Chapman S. On Ozone and Atomic Oxygen in the Upper Atmosphere // Phil. Mag. 1930.V. 10. № 7. P. 369–383.
  4. Crutzen P.J. Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere // J. Geophys. Res. 1971. V. 76. № 30. P. 7311–7327.
  5. Hampson J. Chemical Instability of the Stratosphere, paper presented at the International Association of Meteorology and Atmospheric Physics (IUGG) Symposium on Atmospheric Radiation (1964), Leningrad, USSR.
  6. https://jplpldataeval.jpl,nasa,gov
  7. http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&pag.
  8. Jacob Daniel J. Introduction to Atmospheric Chemistry. Princeton: UniversityPress, 1999. P. 274.
  9. Johnston H.S. Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport emissions // Science. 1971. V. 173. № 6. P. 517–522.
  10. Larin I.K. Odd oxygen and its atmospheric lifetime // Russian J. Physical Chemistry B. 2017. V. 11. № 2. P. 375–379.
  11. Larin I.K. Lifetime of Odd Oxygen // Russian J. Physical Chemistry B. 2019. V. 13. № 5. P. 867–873.
  12. Larin I.K. Chemical Physics of the Ozone Layer. RAS. Moscow, 2018. P. 256.
  13. Larin I.K., Kuskov M.L. Daytime and nighttime lifetimes atmospheric components // Russian Journal Physical Chemistry B. 2014. V. 8. № 2. P. 254–260.
  14. Shimazaki T. Minor constituents in the middle atmosphere. Terra Scientific Publishing Company. Tokio. Japan, 1985. P. 442.
  15. Wofsy C., McElroy M.B. HO, NO, and ClO: Their Role in Atmospheric Photochemistry // Can. J. Chem. 1974. V. 52. № 8. P. 1582–1591.
  16. Wofsy S.C., McElroy M.B., Yung Y.L. Chemistry of the atmospheric bromine // Geophys. Res. Lett. 1975. V. 2. № 6. P. 215–218.
  17. Yung Y.L., Pinto J.P., Watson R.T., Sander S.P. Atmospheric bromine and ozone perturbations in the lower stratosphere // J. Atm. Sci. 1980. V. 37. № 2. P. 339–353.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (287KB)
3.

Download (230KB)
4.

Download (90KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies