Clouds and Turbulence Theory: Peculiar Self-Similarity, 4/3 Fractal Exponent and Invariants

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In 1982 Lovejoy has published an illustration to Mandelbrot proposal how to characterize the area-perimeter ratio of complicated planar forms and it was found that exponent \(\beta \) for the satellite- and radar-determined cloud and rain areas of such a fractal is 1.35 close to 4/3. Later on it was notified that the same exponent was found also for noctilucent clouds. Such a value might be related to classic turbulence theory of 1941. This text demonstrates this relation using two basic papers by Kolmogorov and Obukhov. The role of prefractal multipliers is revealed, they form a couple of the peculiar invariants for cloud fields and a non-dimensional self-similarity numbers for these fields of sizes \(1 - {{10}^{6}}\,\,{\text{k}}{{{\text{m}}}^{2}}.\) The peculiarity is in their dimensional dependence and in the presence of few invariants, not usual invariants in cloud forms. Further research on random walk of a fluid particle in the 6D phase-space may lead to new discoveries.

About the authors

G. S. Golitsyn

Obukhov Institute of Atmospheric Physics Russian Academy of Science

Author for correspondence.
Email: gsg@ifaran.ru
Russia, 119017, Moscow, Pyzhovskiy per., 3

O. G. Chkhetiani

Obukhov Institute of Atmospheric Physics Russian Academy of Science

Author for correspondence.
Email: ochkheti@gmail.com
Russia, 119017, Moscow, Pyzhovskiy per., 3

N. V. Vazaeva

Obukhov Institute of Atmospheric Physics Russian Academy of Science; Bauman Moscow State Technical University

Author for correspondence.
Email: vazaevanv@ifaran.ru
Russia, 119017, Moscow, Pyzhovskiy per., 3; Russia, 105005, Moscow, 2-ya Baumanskaya str., 5, bld. 1

References

  1. Голицын Г.С. Вероятностная структура макромира: землетресения, ураганы, наводнения… М. – Физматлит, Москва, 2021. 176 с.
  2. Guillaume A., Kahn B.H., Yue Q., Fetzer E.J., Wong S., Manipon G.J., Hua H., Wilson B.D. Horizontal and vertical scaling of cloud geometry inferred from CloudSat data. // J. Atmos. Sci. 2018. V. 75(7). P. 2187–2197. https://doi.org/10.1175/JAS-D-17-0111.1
  3. Kolmogorov A.N. Zufallige Bewegungen. // Ann. Math. 1934. V. 35. P. 116–117. https://doi.org/10.2307/1968123
  4. Lovejoy S. Area-perimeter relation for rain and cloud areas // Science. 1982. V. 216(4542). P. 185–187. https://doi.org/10.1126/science.216.4542.185
  5. Mandelbrot B. Fractals, Form, Chance and Dimension. W.H. Freeman and Co., San Francisco, 1977. 352 p.
  6. Monin A.S., Yaglom A.M. Statistical Hydromechanics. V. 2. MIT Press, Cambridge, MA, 1975. 882 p.
  7. Obukhov A.M. Description of turbulence in terms of Lagrangian variables. // Adv. Geophys. 1959. V. 6. P. 113–115. https://doi.org/10.1016/s0065-2687(08)60098-9
  8. Oort A.H. On estimates of the atmospheric energy cycle. // Mon. Weather Rev. 1964. V. 92(11). P. 483–493. https://doi.org/10.1175/1520-0493(1964)092<0483: OEOTAE>2.3.CO;2
  9. von Savigny C., Brinkhoff L.A., Bailey S.M., Randall C.E., Russell III J.M. First determination of the fractal perimeter dimension of noctilucent clouds. // Geophysical Research Letters. 2011. V. 38(2). https://doi.org/10.1029/2010GL045834
  10. Wood R., Field P.R. The distribution of cloud horizontal sizes // J. Climate. 2011. V. 24(18). P. 4800–4816. https://doi.org/10.1175/2011JCLI4056.1


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies