Clouds and Turbulence Theory: Peculiar Self-Similarity, 4/3 Fractal Exponent and Invariants

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In 1982 Lovejoy has published an illustration to Mandelbrot proposal how to characterize the area-perimeter ratio of complicated planar forms and it was found that exponent \(\beta \) for the satellite- and radar-determined cloud and rain areas of such a fractal is 1.35 close to 4/3. Later on it was notified that the same exponent was found also for noctilucent clouds. Such a value might be related to classic turbulence theory of 1941. This text demonstrates this relation using two basic papers by Kolmogorov and Obukhov. The role of prefractal multipliers is revealed, they form a couple of the peculiar invariants for cloud fields and a non-dimensional self-similarity numbers for these fields of sizes \(1 - {{10}^{6}}\,\,{\text{k}}{{{\text{m}}}^{2}}.\) The peculiarity is in their dimensional dependence and in the presence of few invariants, not usual invariants in cloud forms. Further research on random walk of a fluid particle in the 6D phase-space may lead to new discoveries.

作者简介

G. Golitsyn

Obukhov Institute of Atmospheric Physics Russian Academy of Science

编辑信件的主要联系方式.
Email: gsg@ifaran.ru
Russia, 119017, Moscow, Pyzhovskiy per., 3

O. Chkhetiani

Obukhov Institute of Atmospheric Physics Russian Academy of Science

编辑信件的主要联系方式.
Email: ochkheti@gmail.com
Russia, 119017, Moscow, Pyzhovskiy per., 3

N. Vazaeva

Obukhov Institute of Atmospheric Physics Russian Academy of Science; Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: vazaevanv@ifaran.ru
Russia, 119017, Moscow, Pyzhovskiy per., 3; Russia, 105005, Moscow, 2-ya Baumanskaya str., 5, bld. 1

参考

  1. Голицын Г.С. Вероятностная структура макромира: землетресения, ураганы, наводнения… М. – Физматлит, Москва, 2021. 176 с.
  2. Guillaume A., Kahn B.H., Yue Q., Fetzer E.J., Wong S., Manipon G.J., Hua H., Wilson B.D. Horizontal and vertical scaling of cloud geometry inferred from CloudSat data. // J. Atmos. Sci. 2018. V. 75(7). P. 2187–2197. https://doi.org/10.1175/JAS-D-17-0111.1
  3. Kolmogorov A.N. Zufallige Bewegungen. // Ann. Math. 1934. V. 35. P. 116–117. https://doi.org/10.2307/1968123
  4. Lovejoy S. Area-perimeter relation for rain and cloud areas // Science. 1982. V. 216(4542). P. 185–187. https://doi.org/10.1126/science.216.4542.185
  5. Mandelbrot B. Fractals, Form, Chance and Dimension. W.H. Freeman and Co., San Francisco, 1977. 352 p.
  6. Monin A.S., Yaglom A.M. Statistical Hydromechanics. V. 2. MIT Press, Cambridge, MA, 1975. 882 p.
  7. Obukhov A.M. Description of turbulence in terms of Lagrangian variables. // Adv. Geophys. 1959. V. 6. P. 113–115. https://doi.org/10.1016/s0065-2687(08)60098-9
  8. Oort A.H. On estimates of the atmospheric energy cycle. // Mon. Weather Rev. 1964. V. 92(11). P. 483–493. https://doi.org/10.1175/1520-0493(1964)092<0483: OEOTAE>2.3.CO;2
  9. von Savigny C., Brinkhoff L.A., Bailey S.M., Randall C.E., Russell III J.M. First determination of the fractal perimeter dimension of noctilucent clouds. // Geophysical Research Letters. 2011. V. 38(2). https://doi.org/10.1029/2010GL045834
  10. Wood R., Field P.R. The distribution of cloud horizontal sizes // J. Climate. 2011. V. 24(18). P. 4800–4816. https://doi.org/10.1175/2011JCLI4056.1


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
##common.cookie##