Shear Flow Instability over a Finite Time Interval

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Within the framework of a discrete quasi-geostrophic model with two vertical levels, the problem of linear stability of the flow of a stratified rotating fluid with constant vertical and horizontal velocity shifts is solved. It is shown that taking into account the horizontal shear leads to a qualitative change in the dynamics of unstable wave disturbances. The main feature is related to the effect of temporary exponential growth of unstable perturbations, i.e. growth over a finite time period. This effect manifests itself in the alternation of stages of smooth oscillating behavior (in time) with stages of exponential (explosive) growth of finite duration. A kinematic interpretation of the effect of temporal exponential growth is given, which is associated with the passage of a time-dependent perturbation wave vector through the region of exponential instability that exists in the absence of a horizontal shear. It is shown that mathematically this effect is described by solutions of a second-order differential equation containing turning points. Asymptotic solutions of the equation are given for weak horizontal shifts.

About the authors

M. V. Kalashnik

Obukhov Institute of Atmospheric Physics RAS; Institute of Physics of the Earth. O.Yu. Schmidt RAS; Research and Production Association Typhoon

Author for correspondence.
Email: kalashnik-obn@mail.ru
Russia, 119017, Moscow, Pyzhevsky per., 3,; Russia, 123242, Moscow, Bolshaya Gruzinskaya str., 10; Russia, 249038, Kaluga obl., Obninsk, Pobedy str., 4,

References

  1. Гилл А. Динамика атмосферы и океана. М.: Мир, 1986. Т. 2. 415 с.
  2. Калашник М.В. Линейная динамика волн Иди в присутствии горизонтального сдвига // Известия РАН. Физика атмосферы и океана. 2009. Т. 45. № 6. С. 764–774.
  3. Калашник М.B., Курганский М.В., Чхетиани О.Г. Бароклинная неустойчивость в геофизической гидродинамике // Успехи физических наук. 2022. Т. 192. № 10. С. 1110–1144. https://doi.org/10.3367/UFNr.2021.08.039046
  4. Кочин Н.Е., Кибель Н.А., Розе Н.В. Теоретическая гидромеханика. Ч. 1. М.: Физматгиз, 1963. 530 с.
  5. Ламб Г. Гидродинамика. Л.: Гостехиздат, 1947. 1084 с.
  6. Лайтхилл Дж. Волны в жидкостях. М.: Мир, 1981. 600 с.
  7. Ле Блон П., Майсек Л. Волны в океане. М.: Мир, 1981. Т. 1. 480 с., Т. 2. 365 с.
  8. Монин А.С. Теоретические основы геофизической гидродинамики. Л.: Гидрометеоиздат, 1988. 433 с.
  9. Найфэ А. Методы возмущений. М.: Мир, 1976. 456 с.
  10. Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 622 с.
  11. Фабер Т.Е. Гидроаэродинамика. М.: Постмаркет, 2001. 560 с.
  12. Barcilon A., Bishop C.H. Nonmodal development of baroclinic waves undergoing horizontal shear deformation // J. Atmos. Sci. 1998. V. 55. № 4. P. 3583–3597.
  13. Bishop C.H. On the behavior of baroclinic waves undergoing horizontal shear deformation I: The “RT” phase diagram // Quart. J. Roy. Met. Soc. 1993. V. 119. P. 221–240.
  14. Chagelishvili G.D., Khujadze G.R., Lominadze J.G., Rogava A.D. Acoustic Waves in Unbounded Shear Flows // Physics of Fluids. 1997. V. 9. P. 1955–1965.
  15. Chagelishvili G.D., Tevzadze A.G., Bodo G., Moiseev S.S. Linear mechanism of wave emergence from vortices in smooth shear flows // Phys. Rev. Letters. 1997. V. 79. № 17. P 3178–3181.
  16. Eady E.T. Long waves and cyclone waves // Tellus. 1949. № 1(3). P. 33–52.
  17. Held I.M., Pierrehumbert R.T., Garner S.T., Swanson K.L. Surface quasi-geostrophic dynamics // J. Fluid Mech. 1995. V. 282. P. 1–20.
  18. Kalashnik M.V., Chkhetiani O.G., Kurgansky M.V. Discrete SQG models with two boundaries and baroclinic instability of jet flows // Phys. Fluids. 2021. V. 33. P. 076608. https://doi.org/ Submitted: 14 May 2021. Accepted: 04 July 2021. Published Online: 20 July 2021.https://doi.org/10.1063/5.0056785
  19. Kalashnik M.V., Mamatsashvili G.R., Chagelishvili G.D., Lominadze J.G. Linear dynamics of non-symmetric perturbations in geostrophic flows with a constant horizontal shear // Quart. J. Roy. Met. Soc. 2006. V. 132. № 615. P. 505–518.
  20. Pedlosky J., Geophysical Fluid Dynamics (Springer-Verlag, Berlin/New York, 1987). P. 710.
  21. Phillips N.A. Energy transformation and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model // Tellus. 1954. V. 6. P. 273–283.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (129KB)
3.

Download (21KB)
4.

Download (104KB)
5.

Download (62KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies