Model Estimate of the Acidity of Atmospheric Precipitation Acidity Due to Anthropogenic Sulfur Compounds in the 20th Century

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analysis of the acidity of precipitation is carried out by using the ChAP-1.0 (Chemistry and Aerosol Processes) atmospheric sulfur cycle scheme developed for Earth System Models of Intermediate Complexity (EMICs)These calculations are forced by monthly mean anthropogenic emissions of sulfur dioxide to the atmosphere in 1850–2000 adapted from the CMIP5 (Coupled Models Intercomparison Project, phase 5) database and by long-term means (taking into account annual variations) of meteorological variables adapted from the ERA-Interim reanalysis for 1979–2015. It was revealed that significant acidity of precipitation (minimum pH of hydrometeors) is typical for regions with high anthropogenic loading of sulfur compounds in atmosphere – Europe, southeast Asia, east North America, southern Africa, and western South America. In these regions in the last decades of the 20th century, typical precipitation values of pH amount from 2.5 to 3.5, which agrees well with the available measurements. The maximum acidity of precipitation (the minimum pH of hydrometeors, which is close to 2) due to anthropogenic sulfur are noted in the eastern Mediterranean region. Atmospheric transport leads to regions with pH < 3.5 covering almost all of Eurasia in the last decades of the 20th century. The influence of this transport is also noticeable in other midlatitudinal regions – south of North America and western South America. In general, the ChAP scheme can be used in EMICs, but after a refinement to account for the effect of various types of precipitation on the wet deposition of sulfur compounds from the atmosphere and the effects of orography on the transport of chemical species in the atmosphere

About the authors

R. D. Gizatullin

Kazan Federal University

Email: eliseev.alexey.v@mail.ru
Russia, 420097, Kazan, ul. Tovarishcheskaya

A. V. Eliseev

Kazan Federal University; Lomonosov Moscow State University; Obukhov Institute of Atmospheric Physics RAS; Moscow Center of Fundamental and Applied Mathematics

Author for correspondence.
Email: eliseev.alexey.v@mail.ru
Russia, 420097, Kazan, ul. Tovarishcheskaya; Russia, 119991, Moscow, Leninskie Gory, 1, bld. 2; Russia, 119017, Moscow, Pyzhevsky per. 3; Russia, 119991, Moscow, Leninskie Gory, 1, bld.1

References

  1. Seinfeld J., Pandis S. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken: Wiley. 2006. 1326 p.
  2. Warneck P. Chemistry of the Natural Atmosphere. San Diego: Academic Press. 2000. 927 p.
  3. Суркова Г.В. Химия атмосферы. М.: МГУ. 2002. 210 с.
  4. Моисеенко Т.И., Гашкина Н.А. Зональные особенности закисления озер // Водные ресурсы. 2011. Т. 38. 1. С. 39–55.
  5. Моисеенко Т.И., Гашкина Н.А., Дину М.И. и др. Влияние природных и антропогенных факторов на процессы закисления вод в гумидных регионах // Геохимия. 2017. 1. С. 41–56.
  6. Pye H.O.T., Nenes A., Alexander B. et al. The acidity of atmospheric particles and clouds // Atmos. Chem. Phys. 2020. V. 20. 8. P. 4809–4888.
  7. Tilgner A., Schaefer T., Alexander B. et al. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds // Atmos. Chem. Phys. 2021. V. 21. 17. P. 13483–13536.
  8. Kuylenstierna J.C.I., Rodhe H., Cinderby S. et al. Acidification in developing countries: Ecosystem sensitivity and the critical load approach on a global scale // Ambio. 2001. V. 30. 1. P. 20–28.
  9. Моисеенко Т.И., Калабин Г.В., Хорошавин В.Ю. Закисление водосборов арктических регионов // Изв. РАН, серия географическая. 2012. 2. С. 49–58.
  10. Buck R.P., Rondinini S., Covington A.K. et al. Measurement of . Definition, standards, and procedures (IUPAC Recommendations 2002) // Pure Appl. Chem. 2002. V. 74. 11. P. 2169–2200.
  11. Vet R., Artz R.S., Carou S. et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and , and phosphorus // Atmos. Environ. 2014. V. 93. P. 3–100.
  12. Eliseev A.V., Gizatullin R.D., Timazhev A.V. ChAP 1.0: A stationary tropospheric sulfur cycle for Earth system models of intermediate complexity // Geosci. Model. Dev. 2021. V. 14. 12. P. 7725–7747.
  13. Claussen M., Mysak L., Weaver A. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models // Clim. Dyn. 2002. V. 18. 7. P. 579–586.
  14. Jaenicke R. Tropospheric aerosols // Aerosol–Cloud–Climate Interactions. Hobbs P. (ed.). San Diego: Academic Press 1993. P. 1–31.
  15. Елисеев А.В., Тимажев А.В., Хименес П.Л. Вертикальный масштаб для профилей водяного пара и соединений серы в нижней тропосфере // Оптика атмосферы и океана. 2022. Т. 35. 7. .
  16. Lamarque J.-F., Bond T.C., Eyring V. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and pplication // Atmos. Chem. Phys. 2010. V. 10. 15. P. 7017–7039.
  17. Dee D.P., Uppala S.M., Simmons A.J. et al. The ERA–Interim reanalysis: configuration and performance of the data assimilation system // Quart. J. R. Met. Soc. 2011. V. 137. 656. P. 553–597.
  18. Мохов И.И., Елисеев А.В. Моделирование глобальных климатических изменений в XX–XXIII веках при новых сценариях антропогенных воздействий RCP // Доклады AH. 2012. Т. 443. 6. С. 732–736.
  19. Мохов И.И., Елисеев А.В., Гурьянов В.В. Модельные оценки глобальных и региональных изменений климата в голоцене // Доклады Aкадемии наук. Науки о Земле. 2020. V. 490. 1. P. 27–32.
  20. Allen R.J., Landuyt W., Rumbold S.T. An increase in aerosol burden and radiative effects in a warmer world // Nature Clim. Change. 2016. V. 6. 3. P. 269–274.
  21. Wang Y., Xia W., Liu X. et al. Disproportionate control on aerosol burden by light rain // Nature Geosci. 2021. V. 14. 2. P. 72–76.
  22. Koch D., Jacob D., Tegen I. et al. Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model // J. Geophys. Res.: Atmospheres. 1999. V. 104. D19. P. 23799–23822.
  23. Gliß J., Mortier A., Schulz M. et al. Aerocom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations // Atmos. Chem. Phys. 2021. V. 21. 1. P. 87–128.
  24. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton J.T., Ding Y., Griggs D.J. (eds.). Cambridge/New York: Cambridge University Press. 2001. 881 p.
  25. Lamarque J.-F., Dentener F., McConnell J. et al. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes // Atmos. Chem. Phys. 2013. V. 13. 16. P. 7997–8018.
  26. Inness A., Ades M., Agustí–Panareda A. et al. The CAMS reanalysis of atmospheric composition // Atmos. Chem. Phys. 2019. V. 19. 6. P. 3515–3556.
  27. Simpson D., Benedictow A., Berge H. et al. The EMEP MSC-W chemical transport model – technical description // Atmos. Chem. Phys. 2012. V. 12. 16. P. 7825–7865.
  28. Langner J., Rodhe H. A global three–dimensional model of the tropospheric sulphur cycle // J. Atmos. Chem. 1991. V. 13. 3. P. 225–263.
  29. Pham M., Müller J-F., Brasseur G.P. et al. A three-dimensional study of the tropospheric sulfur cycle // J. Geophys. Res.: Atmospheres. 1995. V. 100. D12. P. 26 061–26 092.
  30. Свистов П.Ф. Антропогенные осадки: происхождение, состав и свойства // Экологическая химия. 2011. Т. 20. 2. С. 105–113.
  31. Суркова Г.В., Еремина И.Д., Мордкович П.А. О влиянии крупномасштабного атмосферного переноса на химический состав и количество атмосферных осадков в центре Европейской территории Рoссии // Метеорология и гидрология. 2010. 4. С. 36–44.
  32. Еремина И.Д., Чубарова Н.Е., Алексеева Л.И. и др. Кислотность и химический состав осадков на территории московского региона в теплый период года // Вестник Московского университета. Серия 5: География. 2014. 5. С. 3–11.
  33. Lana A., Bell T.G., Simó R. et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean // Glob. Biogeochem. Cycles. 2011. V. 25. 1. P. GB1004.
  34. Galí M., Levasseur M., Devred E. et al. Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales // Biogeosciences. 2018. V. 15. 11. P. 3497–3519.
  35. Wang W.-L., Song G., Primeau F. et al. Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network // Biogeosciences. 2020. V. 17. 21. P. 5335–5354.
  36. Carn S.A., Fioletov V.E., McLinden C.A. et al. A decade of global volcanic emissions measured from space // Sci. Rep. 2017. V. 7. 1. P. 44095.
  37. Lamarque J.-F., Kyle G.P., Meinshausen M. et al. Global and regional evolution of short–lived radiatively–active gases and aerosols in the Representative Concentration Pathways // Clim. Change. 2013. V. 109. 1–2. P. 191–212.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (304KB)
3.

Download (725KB)
4.

Download (763KB)
5.

Download (757KB)
6.

Download (390KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies