On the Theory of Individual Atmospheric Vortices: an Example of the Subtropical Anticyclone Evolution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physics of individual atmospheric vortices is far from clear, despite the fact that modern hydrodynamic models reliably reproduce them. In this paper, we develop the theory of vortices that stably exist for a long time in a certain region. Their structure is characterized by the first (dominant) empirical orthogonal function (EOF, NOF), and the dynamics is determined by the coefficient at a given mode y1(t), for which an ordinary differential equation is obtained based on the vorticity budget equation. The residual between the explicitly resolved terms is compensated by the parameterization, which is based on taking into account the effects of the second and subsequent modes of the EOF expansion. It is shown that it consists of Gaussian noise and a non-random component, which can be approximated using a cubic function of y1(t). To test the developed technique, we used modeling of the vorticity behavior describing the dynamics of the most stable vortex among all existing in the Earth’s atmosphere—the subtropical (Hawaiian) anticyclone. ERA5 reanalysis data were used for the work. The proposed approach to the analysis of integral vortex structures is supposed to be used to evaluate various circulation systems, identify factors affecting their dynamics in different regions, and study extreme hydrometeorological events associated with long-lived vortexes.

About the authors

A. V. Kislov

Lomonosov Moscow State University

Author for correspondence.
Email: avkislov@mail.ru
Russia, 119991, Moscow, Leninskie Gory, 1

I. V. Zheleznova

Lomonosov Moscow State University

Author for correspondence.
Email: ijeleznova@gmail.com
Russia, 119991, Moscow, Leninskie Gory, 1

Yu. V. Mukhartova

Lomonosov Moscow State University

Email: ijeleznova@gmail.com
Russia, 119991, Moscow, Leninskie Gory, 1

A. I. Nesviatipaska

Lomonosov Moscow State University

Email: ijeleznova@gmail.com
Russia, 119991, Moscow, Leninskie Gory, 1

References

  1. Rudeva I., Gulev S.K. Composite analysis of the North Atlantic extratropical cyclones in NCEP/NCAR reanalysis. // Mon. Wea. Rew. 2011. V. 139. № 5. P. 1419–1446. https://doi.org/10.1175/2010MWR3294.1
  2. Пальмен Э., Ньютон Ч. Циркуляционные системы атмосферы. Л: Гидрометиздат, 1973. 615 с.
  3. Saffman P.G. Vortex Dynamics. Cambridge University Press, Cambridge, 1992.
  4. Lamb G. Hydrodynamics. 6th Edition, Cambridge University Press, Cambridge, 1932.
  5. Cushman-Rosin B., Hell W.H., Nof D. Oscillation and Rotation of Elliptical Warm-Core Rings // Journal of the Geophysical Research. 1985. V. 90. P. 11 756–11 764. https://doi.org/10.1029/JC090iC06p11756
  6. Meacham S.M., Pankratov K.K., Shchepetkin A.F., Zhmur V.V. The Interaction of Ellipsoidal Vortices with Background Shear Flows in a Stratified Fluid. // Dynamics of Atmospheres and Oceans. 1994. V. 21. P. 167–212. https://doi.org/10.1016/0377-0265(94)90008-6
  7. Жмур В.В. Мезомасштабные вихри океана. М.: ГЕОС, 2011. 289 с.
  8. Zhmur V.V., Ryzhov E.A. and Koshel K.V. Ellipsoidal Vortex in a Nonuniform Flow: Dynamics and Chaotic Advections. // Journal of Marine Research. 2011. V. 69. P. 435–461. https://doi.org/10.1357/002224011798765204
  9. Zabusky N.J., Hughes M.N., Roberts K.V.J. Contour dynamics for the Euler equations in two-dimensions // J. Comp.Phys. 1979. V. 30, №. 1. P. 96‒106. https://doi.org/10.1016/0021-9991(79)90089-5
  10. Barriopedro D., García-Herrera R., Lupo A.R., Hernández, E. A Climatology of Northern Hemisphere blocking. // Journal of Climate. 2006. V. 19. P. 1042–1063. https://doi.org/10.1175/JCLI3678.1
  11. Mokhov I., Timazhev A.V., Lupo A.R. Changes in Atmospheric Blocking Characteristics within Euro-Atlantic Region and Northern Hemisphere as a Whole in the 21st Century from Model Simulations Using RCP Anthropogenic Scenarios. // Global and Planetary Change. 2014. V. 122. P. 265–270. https://doi.org/10.1016/j.gloplacha.2014.09.004
  12. Hannachi A., Jolliffe I.T., Stephenson D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review // International Journal of Climatology: A Journal of the Royal Meteorological Society. 2007. V. 27. P. 1119–1152. https://doi.org/10.1002/joc.1499
  13. Feldstein S. The Growth and Decay of Low-Frequency Anomalies in a GCM. // Journal of the Atmospheric Sciences. 1998. V. 55. P. 415–428. https://doi.org/10.1175/1520-0469(1998)055<0415: TGADOL>2.0.CO;2
  14. Кислов А.В., Соколихина Н.Н., Семенов Е.К., Тудрий К.О. Анализ вихря как целостного образования применительно к исследованию блокирующего антициклона 2010 г // Метеорология и гидрология. 2017. № 4. С. 18–26.
  15. Кислов А.В., Соколихина Н.Н., Семенов Е.К., Тудрий К.О. Динамика зимнего высокоширотного блокирующего антициклона зимой 2012 года в Северном полушарии // Труды Гидрометеорологического научно-исследовательского центра Российской Федерации. 2017. № 363. С. 24–35.
  16. Kislov A., Sokolikhina N., Semenov E. and Tudriy K. Blocking Anticyclone in the Atlantic Sector of the Arctic as an Example of an Individual Atmospheric Vortex // Atmospheric and Climate Sciences. 2017. V. 7. P. 323–336. https://doi.org/10.4236/acs.2017.73024
  17. Семенов Е.К., Соколихина Н.Н., Татаринович Е.В. Атмосферная циркуляция в период катастрофического снегопада в Хабаровском крае 30 ноября – 2 декабря 2014 г // Метеорология и гидрология. 2018. № 1. С. 85–96.
  18. Majda A., Timofeyev I., Vanden-Eijnden E. A mathematical framework for stochastic climate models // Communications on Pure and Applied Mathematics. 2001. V. 54. P. 891–974.
  19. Majda A., Franzke C., Khouider B. An applied mathematics perspective on stochastic modelling for climate // Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 2008. V. 366. P. 2429–2455.
  20. Majda A., Franzke C., Crommelin D. Normal forms for reduced stochastic climate models // Proceedings of the National Academy of Sciences of the United States of America. 2009. V. 106. P. 3649–3653.
  21. Hersbach H., Bell B., Berrisford P., Biavati G., Horányi A., Muñoz Sabater J., Nicolas J., Peubey C., Radu R., Rozum I., Schepers D., Simmons A., Soci C., Dee D., Thépaut J-N. ERA5 hourly data on pressure levels from 1979 to present // Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018.
  22. Петерсен С. Анализ и прогноз погоды. Ленинград: Гидрометеоиздат, 1961. 650 с.
  23. Рамедж К. Метеорология муссонов. Ленинград : Гидрометеоиздат, 1976. 335 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (537KB)
3.

Download (604KB)
4.

Download (366KB)
5.

Download (191KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies