Simulation of Present Day Climate with Climate Model INMCM60

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Simulation of present day climate with a new version of climate model developed in INM RAS is considered. The model differs from a previous version by the change in cloudiness and condensation scheme, that leads to higher sensitivity to CO2 increase. The changes are included also in calculation of aerosol evolution, land snow, atmospheric boundary layer parameterizations and other blocks. The model is capable to reproduce near surface air temperature, precipitation, sea level pressure, cloud radiation forcing and other parameters better than previous version. The largest improvement can be seen in simulation of temperature in tropical troposphere, polar tropopause, and surface temperature in the Southern ocean. Simulation of climate changes in 1850–2021 by two model versions is considered.

About the authors

E. M. Volodin

Marchuk Institute of Numerical Mathematics RAS; Obukhov Institute of Atmospheric Physics RAS

Author for correspondence.
Email: volodinev@gmail.com
Russia, 119333, Moscow, Gubkina Str., 8; Russia, 119017, Moscow, Pyzhevsky per., 3

References

  1. Volodin E.M., Mortikov E.V., Kostrykin S.V., Galin V.Ya., Lykossov V.N., Gritsun A.S., Diansky N.A., Gusev A.V., Iakovlev N.G., Shestakova A.A., Emelina S.V. Simulation of the modern climate using the INM-CM48 climate model // Russian J. Num. Anal. Math. Modelling. 2018. V. 33. № 6. P. 367–374.
  2. Володин Е.М. Равновесная чувствительность модели климата к увеличению концентрации СО2 в атмосфере при различных методах учета облачности // Известия РАН. Физика атмосферы и океана. 2021. Т. 57. № 2. С. 139–145.
  3. Bock L., Lauer A., Schlund M., Barreiro M., Bellouin N., Jones C., Meehl G., Predoi V., Roberts M., Eyring V. Quantifying progress across different CMIP phases with the ESMValTool // Journal of Geophysical Research: Atmospheres. 2020. e2019JD032321.
  4. Tiedtke M. Representation of clouds in large-scale models // Mon. Weather Rev. 1993. V. 121. P. 3040–3061.
  5. Чубарова Н.Е., Полюхов А.А., Володин Е.М. Совершенствование расчета эволюции сульфатного аэрозоля и его радиационных эффектов в климатической модели ИВМ РАН // Известия РАН. Физика атмосферы и океана. 2021. Т. 57. № 4. С. 421–431.
  6. Полюхов А.А., Чубарова Н.Е., Володин Е.М. Влияние учета непрямого эффекта сульфатного аэрозоля на радиацию и облачность в климатической модели ИВМ РАН // Известия РАН. Физика атмосферы и океана. 2022, Т. 58 (в печати)
  7. Черненков А.Ю., Кострыкин С.В. Оценка радиационного форсинга от загрязнения снега черным углеродом по данным климатической модели // Известия РАН. Физика атмосферы и океана. 2021. Т. 57. № 2. С. 146–155.
  8. Zilitinkevich S.S., Elperin T., Kleeorin N., Rogachevskii I., Esau I. A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows // Bound.-Layer Meteorol. 2013. V. 146. P. 341–373.
  9. Eyring V., Bony S., Meehl G. A., Senior C.A., Stevens B., Stouffer R. J., Taylor K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geosci. Model Dev. 2016. V. 9. P. 1937–1958.
  10. O’Neill B.C., Tebaldi C., van Vuuren D.P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J.-F., Lowe J., Meehl G.A., Moss R., Riahi K., Sanderson B.M. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 // Geosci. Model Dev. 2016, V. 9. P. 3461–3482.
  11. Dee D.P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system // Quart. J. Roy. Meteorol. Soc. 2011. V. 137. P. 553–597.
  12. Adler R. et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation // Atmosphere, 2017. V. 9. P. 138.
  13. Doelling D.R., Sum M., Nguyen L., Nordeen M., Haney C., Keyes D., Mlynczak P. Advances in Geostationary-Derived Longwave Fluxes for the CERES Synoptic (SYN1deg) Product // Journal of Atmospheric and Oceanic Technology, 2016, V. 33(3). P. 503–521.
  14. Morice C.P., Kennedy J.J., Rayner N.A., Winn J.P., Hogan E., Killick R.E., Dunn R.J.H., Osborn T.J., Jones P.D., Simpson I.R. // An updated assessment of near-surface temperature change from 1850: the HadCRUT5 dataset. Journal of Geophysical Research 2021, V. 126. № 3. e2019JD032361.
  15. Szopa S., Naik V., Adhikary B., Artaxo P., Berntsen T., Collins W.D., Fuzzi S., Gallardo L., Kiendler-Scharr A., Klimont Z., Liao H., Unger N., and Zanis P. Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Che Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B.(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 817–922.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (591KB)
4.

Download (248KB)
5.

Download (2MB)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies