Определение фазового состава образцов феррита меди безэталонным методом дифференцирующего растворения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены результаты применения стехиографического метода дифференцирующего растворения (ДР) для определения фазового состава катализаторов гидролиза и гидротермолиза амминборана [1, 2]. Исследуемые образцы феррита меди Cu1–xFe2+xO4 приготовлены методом послойного горения, высушены и прокалены при различных температурах. Приведены условия обнаружения и количественного определения различных фаз в составе аморфных и кристаллических образцов со структурой шпинельного типа. Сопоставлены результаты ДР и рентгенофазового анализа.

Об авторах

А. А. Почтарь

Институт катализа им. Г.К. Борескова СО Российской академии наук

Email: po4tar@catalysis.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 5

О. В. Комова

Институт катализа им. Г.К. Борескова СО Российской академии наук

Email: po4tar@catalysis.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 5

О. В. Нецкина

Институт катализа им. Г.К. Борескова СО Российской академии наук

Автор, ответственный за переписку.
Email: po4tar@catalysis.ru
Россия, 630090, Новосибирск, пр. Академика Лаврентьева, 5

Список литературы

  1. Komova O.V., Odegova G.V., Gorlova A.M., Bulavchenko O.A., Pochtar A.A., Netskina O.V., Simagina V.I. Copper–Iron Mixed Oxide Catalyst Precursors Prepared by Glycine-Nitrate Combustion Method for Ammonia Borane Dehydrogenation Processes // Int. J. Hydrogen. Energy. 2019. V. 44. № 44. P. 24277–24291. https://doi.org/10.1016/j.ijhydene.2019.07.137
  2. Komova O.V., Simagina V.I., Pochtar A.A., Bulavchenko O.A., Ishchenko A.V., Odegova G.V., Gorlova A.M., Ozerova A.M., Lipatnikova I.L., Tayban E.S., Mukha S.A., Netskina O.V. Catalytic Behavior of Iron-Containing Cubic Spinel in the Hydrolysis and Hydrothermolysis of Ammonia Borane // Materials. 2021. V. 14. № 18. P. 5422. https://doi.org/10.3390/ma14185422
  3. Yadav R.S., Kuřitka I., Vilcakova J., Havlica J., Masilko J., Kalina L., Tkacz J., Hajdúchová M., Enev V. Structural, Dielectric, Electrical and Magnetic Properties of CuFe2O4 Nanoparticles Synthesized by Honey Mediated Sol–Gel Combustion Method and Annealing Effect // J. Mater. Sci. Mater. Electron. 2017. V. 28. № 8. P. 6245–6261. https://doi.org/10.1007/s10854-016-6305-4
  4. Güner S., Esir S., Baykal A., Demir A., Bakis Y. Magneto-Optical Properties of Cu1−xZnxFe2O4 Nanoparticles // Superlattices. Microstruct. 2014. V. 74. P. 184–197. https://doi.org/10.1016/ J.SPMI.2014.06.021
  5. Casbeer E., Sharma V.K., Li X.Z. Synthesis and Photocatalytic Activity of Ferrites under Visible Light: a Review // Sep. Purif. Technol. 2012. V. 87. P. 1–14. https://doi.org/10.1016/J.SEPPUR.2011.11.034
  6. Qin Q., Liu Y., Li X., Sun T., Xu Y. Enhanced Heterogeneous Fenton-Like Degradation of Methylene Blue by Reduced CuFe2O4 // RSC Adv. 2018. V. 8. P. 1071–1077. https://doi.org/10.1039/c7ra12488k
  7. Feng J., Su L., Ma Y., Ren C., Guo Q., Chen X. CuFe2O4 Magnetic Nanoparticles: a Simple and Efficient Catalyst for the Reduction of Nitrophenol // Chem. Eng. J. 2013. V. 221. P. 16–24. https://doi.org/10.1016/J.CEJ.2013.02.009
  8. Martins N., Martins L., Amorim C., Amaral V., Pombeiro A. Solvent-Free Microwave-Induced Oxidation of Alcohols Catalyzed by Ferrite Magnetic Nanoparticles // Catalysts. 2017. V. 7 № 7. P. 222. https://doi.org/10.3390/catal7070222
  9. Sutka A., Mezinskis G. Sol-Gel Auto-Combustion Synthesis of Spinel-Type Ferrite Nanomaterials // Front. Mater. Sci. 2012. V. 6. P. 128–141.
  10. Симагина В.И., Комова О.В., Одегова Г.В., Нецкина О.В., Булавченко О.А., Почтарь А.А., Кайль Н.Л. Исследование медь-железо смешанного оксида со структурой кубической шпинели, синтезированного методом горения // Журн. прикл. химии. 2019. Т. 92. № 1. С. 24–34. https://doi.org/10.1134/S0044461819010031
  11. Почтарь А.А., Малахов В.В. Стехиографический метод дифференцирующего растворения в исследовании химического состава функциональных материалов // Неорган. материалы. 2021. Т. 57. № 4. С. 457–464. https://doi.org/10.31857/S0002337X21040126
  12. Почтарь А.А., Малахов В.В. Новые стехиографические методы определения пространственной неоднородности состава и структуры твердых веществ и материалов // Неорган. материалы. 2018. Т. 54. № 7. С. 790–796. https://doi.org/10.7868/S0002337X18070217
  13. Малахов В.В. Особенности динамического режима дифференцирующего растворения как метода фазового анализа // Журн. анал. химии. 2009. Т. 64. № 11. С. 1125–1135.
  14. Малахов В.В., Болдырева Н.Н., Власов А.А., Довлитова Л.С. Методология и техника стехиографического анализа твердых неорганических веществ и материалов // Журн. анал. химии. 2011. Т. 66. № 5. С. 473–479.
  15. Вертушков Г.Н., Авдонин В.Н. Таблицы для определения минералов по физическим и химическим свойствам. М.: Недра, 1980. С. 294.

Дополнительные файлы


© А.А. Почтарь, О.В. Комова, О.В. Нецкина, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».