BiFe2(PO4)3 Ceramics: Fabrication by Hot Pressing and Spark Plasma Sintering, Thermal Conductivity, and Thermal Diffusivity
- Authors: Pet’kov V.I.1, Lavrenov D.A.2, Kovalskii A.M.3, Permin D.A.2
-
Affiliations:
- Nizhny Novgorod State University
- Lobachevsky State University
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Issue: Vol 59, No 7 (2023)
- Pages: 830-836
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/231948
- DOI: https://doi.org/10.31857/S0002337X23070138
- EDN: https://elibrary.ru/QSTCOB
- ID: 231948
Cite item
Abstract
BiFe2(PO4)3 ceramic powder with controlled chemical and phase compositions has been prepared by evaporation of the salt solution, followed by heat treatment. The powder was consolidated by hot pressing and spark plasma sintering, which allowed high-density (92–98%) BiFe2(PO4)3 ceramics with the α-CaMg2(SO4)3 structure to be obtained. Their thermal diffusivity was investigated by the laser flash method in the range 298–573 K, and the thermal conductivity of the high-density (98%) ceramic was determined. Its thermal conductivity was shown to decrease with increasing temperature. The thermal diffusivity and thermal conductivity (0.9–1.4 W/(m K)) of the BiFe2(PO4)3 ceramics demonstrate that they are heat insulators with high working temperatures.
About the authors
V. I. Pet’kov
Nizhny Novgorod State University
Email: piaterikovegor@gmail.com
603950, Nizhny Novgorod, Russia
D. A. Lavrenov
Lobachevsky State University
Email: petkov@inbox.ru
603022, Nizhny Novgorod, Russia
A. M. Kovalskii
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: petkov@inbox.ru
119991, Moscow, Russia
D. A. Permin
Lobachevsky State University
Author for correspondence.
Email: petkov@inbox.ru
603022, Nizhny Novgorod, Russia
References
- Петьков В.И., Дорохова Г.И., Орлова А.И. Архитектура фосфатов с каркасами состава {[L2(PO4)3]p–}3∞ // Кристаллография. 2001. Т. 46. № 1. С. 76−81.
- Singh B., Wang Z., Park S., Gautam G.S., Chotard J.N., Croguennec L., Carlier D., Cheetham A.K., Masquelier C., Canepa P. A Chemical Map of NaSiCON Electrode Materials for Sodium-ion Batteries // J. Mater. Chem. A. 2021. V. 9. № 1. P. 281−292. https://doi.org/10.1039/D0TA10688G
- Yang Z., Tang B., Xie Z., Zhou Z. NASICON-Type Na3Zr2Si2PO12 Solid-State Electrolytes for Sodium Batteries // ChemElectroChem. 2021. V. 8. № 6. P. 1035–1047. https://doi.org/10.1002/celc.202001527
- Balaji D., Mandlimath T.R., Chen J., Matsushita Y., Kumar S.P. Langbeinite Phosphates KPbM2(PO4)3 (M = = Cr, Fe): Synthesis, Structure, Thermal Expansion, and Magnetic Properties Investigation // Inorg. Chem. 2020. V. 59. № 18. P. 13245−13253. https://doi.org/10.1021/acs.inorgchem.0c01597
- Ding J., Zhu P., Li Z., Wang Z., Ai L., Zhao J., Yu F., Duan X., Jiang H. Synthesis, Electronic Structure and Upconversion Photoluminescence of Langbeinite-type K2TiYb(PO4)3 Microcrystals // Optic. 2021. V. 244. P. 167549. https://doi.org/10.1016/j.ijleo.2021.167549
- Петьков В.И., Лавренов Д.А. Способ синтеза фосфатов металлов в степени окисления III: Патент на изобретение № 2758257. Опубликовано: 27.10. 2021. Бюл. “Изобретения. Полезные модели” № 30.
- Weil M. Single Crystal Growth of CaMg2(SO4)3 via Solid-/Gas-Phase Reactions and Its Nasicon-Related Crystal Structure // Cryst. Res. Technol. 2007. V. 42. № 11. P. 1058−1062. https://doi.org/10.1002/crat.200710975
- Krivovichev S.V., Shcherbakova E.P., Nishanbaev T.P. The Crystal Structure of β-CaMg2(SO4)3, a Mineral Phase from Coal Dumps of the Chelyabinsk Coal Basin // Can. Mineral. 2010. V. 48. № 6. P. 1469−1475. https://doi.org/10.3749/canmin.48.5.1469
- Петьков В.И., Сомов Н.В., Лавренов Д.А., Суханов М.В., Фукина Д.Г. Синтез и структура двух представителей фосфатов, образованных катионами металлов в степени окисления III, аналогов α-CaMg2(SO4)3 // Кристаллография. 2020. Т. 65. № 5. С. 745−750. https://doi.org/10.31857/S0023476120050173
- Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мультиферроики // УФН. 2012. Т. 182. № 6. С. 593−620.
- Dikhtyar Y.Y., Deyneko D.V., Boldyrev K.N., Borovikova E.Y., Lipatiev A.S., Stefanovich S.Y., Lazoryak B.I. Luminescent Properties of Er3+ in Centrosymmetric and Acentric Phosphates Ca8MEr(PO4)7 (M = Ca, Mg, Zn) and Ca9–xZnxLa(PO4)7:Er3+ // Mater. Res. Bull. 2021. V. 138. P. 111244. https://doi.org/10.1016/j.materresbull.2021.111244
- Pet’kov V.I., Lavrenov D.A., Kulikova E.V., Smirnova N.N., Markin A.V. Structural Characteristics, Heat Capacity, and Thermal Expansion of BiFe2(PO4)3 // J. Chem. Eng. Data. 2021. V. 66. № 8. P. 3020–3027. https://doi.org/10.1021/acs.jced.1c00074
- Петьков В.И., Лавренов Д.А., Ковальский А.М. Синтез и исследование теплового расширения нового семейства фосфатов – аналогов α-CaMg2(SO4)3 // Неорган. материалы. 2021. Т. 57. № 8. С. 861–865. https://doi.org/10.31857/S0002337X2108025X
- Бубнова Р.С., Филатов С.К. Терморентгенография поликристаллов. Часть II. Определение количественных характеристик тензора термического расширения: учебное пособие. CПб: С.-Петерб. гос. ун-т, 2013. 143 с.
- Drebushchak V.A. Thermal Expansion of Solids: Review on Theories // J. Therm. Anal. Calorim. 2020. V. 142. № 2. P. 1097−1113. https://doi.org/10.1007/s10973-020-09370-y
- Tokita M. Spark Plasma Sintering (SPS) Method, Systems, and Applications // Handbook of Advanced Ceramics. N.Y.: Academic Press, 2013. P. 1149−1177. https://doi.org/10.1016/B978-0-12-385469-8.00060-5
- Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. The Effect of Electric Field and Pressure on the Synthesis and Consolidation Materials: A Review of the Spark Plasma Sintering Method // J. Mater. Sci. 2006. V. 41. P. 763–777. https://doi.org/10.1007/s10853-006-6555-2
- Чувильдеев В.Н., Болдин М.С., Дятлова Я.Г., Румянцев В.И., Орданьян С.С. Сравнительное исследование горячего прессования и искрового плазменного спекания порошков Al2O3−ZrO2−Ti(C,N) // Неорган. материалы. 2015. Т. 51. № 10. С. 1128−1134. https://doi.org/10.7868/S0002337X15090031
- Klemens P.G. Thermal Resistance due to Point Defects at High Temperatures // Phys. Rev. 1960. V. 119. № 2. P. 507−509. https://doi.org/10.1103/PhysRev.119.507
- Шелудяк Ю.Е., Кашпоров Л.Я., Малинин Л.А., Цалков В.Н. Теплофизические свойства компонентов горючих систем. М.: Наука, 1992. 184 с.
- Шевченко В.Я., Баринов С.М. Техническая керамика. М.: Наука, 1993. 187 с.
Supplementary files
