IR Photoluminescence of the RbBa2(PO3)5 Polyphosphate Containing Bi+ Impurity Centers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rubidium barium polyphosphate RbBa2(PO3)5 containing impurity bismuth monocations has been prepared via crystallization from a melt with the stoichiometric composition and melts containing excess of rubidium or barium. The samples thus obtained demonstrate broadband photoluminescence in the Near-IR. Analysis of their photoluminescence properties leads us to conclude that they contain two types of emission centers and that predominant formation of one of them depends on melt composition. Our results show that one of the emissive centers is a bismuth monocation substituting for a barium cation and that it forms mainly from barium-deficient melts. The other emissive center, a Bi+ monocation substituting on the rubidium site, results predominantly from crystallization of rubidium-deficient melts.

About the authors

A. N. Romanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: alexey.romanov@list.ru
119991, Moscow, Russia

A. A. Kapustin

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: alexey.romanov@list.ru
119991, Moscow, Russia

E. V. Haula

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: alexey.romanov@list.ru
119991, Moscow, Russia

A. M. Kuli-zade

Moscow State University

Email: alexey.romanov@list.ru
119991, Moscow, Russia

V. N. Korchak

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: alexey.romanov@list.ru
119991, Moscow, Russia

References

  1. Fujimoto Y., Nakatsuka M. Infrared Luminescence from Bismuth-Doped Silica Glass // Jpn. J. Appl. Phys. 2001. V. 40. № 3B. P. L279–L281. https://doi.org/10.1143/JJAP.40.L279
  2. Fujimoto Y., Nakatsuka M. Optical Amplification in Bismuth-Doped Silica Glass // Appl. Phys. Lett. 2003. V. 82. P. 3325–3326. https://doi.org/10.1063/1.1575492
  3. Veber A., Cicconi M.R., Puri A., de Ligny D. Optical Properties and Bismuth Redox in Bi-Doped High-Silica Al–Si Glasses // J. Phys. Chem. C. 2018. V. 122. № 34. P. 19777–19792. https://doi.org/10.1021/acs.jpcc.8b05614
  4. Meng X., Qiu J., Peng M., Chen D., Zhao Q., Jiang X., Zhu C. Infrared Broadband Emission of Bismuth-Doped Barium-Aluminum-Borate Glasses // Opt. Express. 2005. V. 13. № 5. P. 1635–1642. https://doi.org/10.1364/OPEX.13.001635
  5. Romanov A.N., Fattakhova Z.T., Zhigunov D.M., Korchak V.N., Sulimov V.B. On the Origin of Near-IR Luminescence in Bi-Doped Materials (I). Generation of Low-Valence Bismuth Species by Bi3+ and Bi0 Synproportionation // Opt. Mater. 2011. V. 33. № 4. P. 631–634. https://doi.org/10.1016/j.optmat.2010.11.019
  6. Meng X., Qiu J., Peng M., Chen D., Zhao Q., Jiang X., Zhu C. Near Infrared Broadband Emission of Bismuth-Doped Aluminophosphate Glass // Opt. Express. 2005. V. 13. № 5. P. 1628–1634. https://doi.org/10.1364/OPEX.13.001628
  7. Романов А.Н., Хаула Е.В., Корчак В.Н. Образование и оптические свойства ИК фотолюминесцентных центров в алюмофосфатном стекле, содержащем висмут // Квантовая электроника. 2020. Т. 50. № 10. С. 910–916. https://doi.org/10.1070/QEL17250
  8. Peng M., Qiu J., Chen D., Meng X., Yang I., Jiang X., Zhu C. Bismuth- and Aluminum-Codoped Germanium Oxide Glasses for Super-Broadband Optical Amplification // Opt. Lett. 2004. V. 29. № 17. P. 1998–2000. https://doi.org/10.1364/OL.29.001998
  9. Ren J., Qiu J., Wu B., Chen D. Ultrabroad Infrared Luminescences from Bi-Doped Alkaline Earth Metal Germanate Glasses // J. Mater. Res. 2007. V. 22. № 6. P. 1574–1578. https://doi.org/10.1557/JMR.2007.0200
  10. Hughes M., Suzuki T., Ohishi Y. Advanced Bismuth-Doped Lead-Germanate Glass for Broadband Optical Gain Devices // J. Opt. Soc. Am. B. 2008. V. 25. № 8. P. 1380–1386. https://doi.org/10.1364/JOSAB.25.001380
  11. Winterstein A., Manning S., Ebendorff-Heidepriem H., Wondraczek L. Luminescence from Bismuth-Germanate Glasses and Its Manipulation through Oxidants // Opt. Mater. Express. 2012. V. 2. № 10. P. 1320–1328. https://doi.org/10.1364/OME.2.001320
  12. Dong G.P., Xiao X.D., Ren J.J., Ruan J., Liu X.F., Qiu J.R., Lin C.G., Tao H.Z., Zhao X.J. Chin. Broadband Infrared Luminescence from Bismuth-Doped GeS2-Ga2S3 Chalcogenide Glasses // Chin. Phys. Lett. 2008. V. 25. № 5. P. 1891–1894. https://doi.org/10.1088/0256-307X/25/5/101
  13. Hughes M.A., Akada T., Suzuki T., Ohishi Y., Hewak D.W. Ultrabroad Emission from a Bismuth Doped Chalcogenide Glass // Opt. Express. 2009. V. 17. № 22. P. 19345–19355. https://doi.org/10.1364/OE.17.019345
  14. Romanov A.N., Haula E.V., Fattakhova Z.T., Veber A.A., Tsvetkov V.B., Zhigunov D.M., Korchak V.N., Sulimov V.B. Near-IR Luminescence from Subvalent Bismuth Species in Fluoride Glass // Opt. Mater. 2011. V. 34. № 1. P. 155–158. https://doi.org/10.1016/j.optmat.2011.08.012
  15. Romanov A.N., Fattakhova Z.T., Veber A.A., Usovich O.V., Haula E.V., Korchak V.N., Tsvetkov V.B., Trusov L.A., Kazin P.E., Sulimov V.B. On the Origin of Near-IR Luminescence in Bi-Doped Materials (II). Subvalent Monocation Bi+ and Cluster Bi53+ Luminescence in AlCl3/ZnCl2/BiCl3 Chloride Glass // Opt. Express. 2012. V. 203. № 7. P. 7212–7220. https://doi.org/10.1364/OE.20.007212
  16. Zlenko A.S., Mashinsky V.M., Iskhakova L.D., Semjonov S.L., Koltashev V.V., Karatun N.M., Dianov E.M. Mechanisms of Optical Losses in Bi:SiO2 Glass Fibers // Opt. Express. 2012. V. 20. № 21. P. 23186–23200. https://doi.org/10.1364/OE.20.023186
  17. Milovich F.O., Iskhakova L.D., Presniakov M.Yu., Vasiliev A.L., Bondarenko V.I., Sverchkov S.E., Galagan B.I. The Identification of Bi Atoms and Clusters in Mg–Al Silicate Glasses // J. Non-Cryst. Solids. 2019. V. 510. P. 166–171. https://doi.org/10.1016/j.jnoncrysol.2018.12.028
  18. Romanov A.N., Serykh A.I., Haula E.V., Shashkin D.P., Kogan V.M., Rozhdestvenskaya N.N., Krylov I.B., Korchak V.N. NIR Photoluminescence of ZSM-5 and Mordenite Zeolites, Containing Low-Valence Bismuth Exchange Cations // Micropor. Mesopor. Mater. 2022. V. 336. P. 111875. https://doi.org/10.1016/j.micromeso.2022.111875
  19. Romanov A.N., Grigoriev F.V., Sulimov V.B. Estimation of Bi+ Monocation Crystal Ionic Radius by Quantum Chemical Simulation // Comp. Theor. Chem. 2013. V. 1017. P. 159–161. https://doi.org/10.1016/j.comptc.2013.05.020
  20. Okhrimchuk A.G., Butvina L.N., Dianov E.M., Lichkova N.V., Zagorodnev V.N., Boldyrev K.N. Near-Infrared Luminescence of RbPb2Cl5:Bi Crystals // Opt. Lett. 2008. V. 33. P. 2182–2184. https://doi.org/10.1364/OL.33.002182
  21. Su L., Zhao H., Li H., Zheng L., Fan X., Jiang X., Tang H., Ren G., Xu J., Ryba-Romanowski W., Lisiecki R., Solarz P. Near-Infrared Photoluminescence Spectra in Bi-Doped CsI Crystal: Evidence for Bi-Valence Conversions and Bi Ion Aggregation // Opt. Mater. Express. 2012. V. 2. P. 757–764. https://doi.org/10.1364/OME.2.000757
  22. Romanov A.N., Veber A.A., Fattakhova Z.T., Usovich O.V., Haula E.V., Trusov L.A., Kazin P.E., Korchak V.N., Tsvetkov V.B., Sulimov V.B. Subvalent Bismuth Monocation Bi+ Photoluminescence in Ternary Halide Crystals KAlCl4 and KMgCl3 // J. Lumin. 2013. V. 134. P. 180–183. https://doi.org/10.1016/j.jlumin.2012.08.051
  23. Veber A.A., Romanov A.N., Usovich O.V., Fattakhova Z.T., Haula E.V., Korchak V.N., Trusov L.A., Kazin P.E., Sulimov V.B., Tsvetkov V.B. Optical Properties of the Bi+ Center in KAlCl4 // J. Lumin. 2014. V. 151. P. 247–255. https://doi.org/10.1016/j.jlumin.2014.02.024
  24. Romanov A.N., Veber A.A., Fattakhova Z.T., Vtyurina D.N., Kouznetsov M.S., Zaramenskikh K.S., Lisitsky I.S., Korchak V.N., Tsvetkov V.B., Sulimov V.B. Spectral Properties and NIR Photoluminescence of Bi+ Impurity in CsCdCl3 Ternary Chloride // J. Lumin. 2014. V. 149. P. 292–296. https://doi.org/10.1016/j.jlumin.2014.01.049
  25. Втюрина Д.Н., Романов А.Н., Вебер А.А., Фаттахова З.Т., Антонов А.А., Цветков В.Б., Корчак В.Н. Спектральные характеристики и ИК-фотолюминесценция примесного центра Bi+ в составе тройных хлоридов RbAlCl4, CsAlCl4, RbMgCl3, CsMgCl3, KCdCl3 и RbCdCl3 // Хим. физика. 2016. Т. 35. № 5. С. 16–22.
  26. Romanov A.N., Veber A.A., Vtyurina D.N., Kouznetsov M.S., Zaramenskikh K.S., Lisitsky I.S., Fattakhova Z.T., Haula E.V., Loiko P.A., Yumashev K.V., Korchak V.N. NIR Photoluminescence of Bismuth-Doped CsCdBr3 – The First Ternary Bromide Phase with a Univalent Bismuth Impurity Center // J. Lumin. 2015. V. 167. P. 371–375. https://doi.org/10.1016/j.jlumin.2015.07.020
  27. Романов А.Н., Втюрина Д.Н., Хаула Е.В., Шашкин Д.П., Пимкин Н.А., Кузнецов М.С., Лисицкий И.С., Корчак В.Н. ИК-фотолюминесценция примесных центров Bi+ в составе тройного хлорида RbY2Cl7 // Хим. физика. 2016. Т. 35. № 9. С. 14–19.
  28. Romanov A.N., Haula E.V., Shashkin D.P., Korchak V.N. Broadband Near-IR Photoluminescence of Bismuth-Doped Cyclotriphosphate RbMgP3O9 Phase // J. Alloys Compd. 2021. V. 864. P. 158907. https://doi.org/10.1016/j.jallcom.2021.158907
  29. Романов А.Н., Хаула Е.В., Костюков А.А., Егоров А.Е., Кузьмин В.А., Корчак В.Н. ИК-фотолюминесценция примесного монокатиона висмута в смешанных циклотрифосфатах щелочных и щелочноземельных металлов // Неорган. материалы. 2022. Т. 58. № 12. С. 1331–1341.
  30. Durif A. Crystal Chemistry of Condensed Phosphates. N. Y.: Springer Science + Business Media, 1995.
  31. Zhao S., Gong P., Luo S., Bai L., Lin Z., Ji C., Chen T., Hong M., Luo J. Deep-Ultraviolet Transparent Phosphates RbBa2(PO3)5 and Rb2Ba3(P2O7)2 Show Nonlinear Optical Activity from Condensation of [PO4]3– Units // J. Am. Chem. Soc. 2014. V. 136. № 24. P. 8560–8563. https://doi.org/10.1021/ja504319x
  32. Romanov A.N., Haula E.V., Kouznetsov M.S., Lisitsky I.S., Pimkin N.A., Boldyrev K.N., Sereda A.E., Shashkin D.P., Korchak V.N. Preparation of Optical Media with NIR Luminescent Bi+ Impurity Centers by Ion Exchange // J. Am. Ceram. Soc. 2019. V. 102. P. 2745–2751. https://doi.org/10.1111/jace.16170
  33. Lakowicz J.P. Principles of Fluorescence Spectroscopy. N. Y.: Kluwer, 2-nd edition, 1999. P. 619.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (110KB)
3.

Download (133KB)
4.

Download (99KB)
5.

Download (283KB)
6.

Download (130KB)

Copyright (c) 2023 А.Н. Романов, А.А. Капустин, Е.В. Хаула, А.М. Кули-заде, В.Н. Корчак

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».