Methanol Steam Reforming on Metal–Carbon Catalysts Having Different Carbon Supports

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We have studied Cu–Zn and Cu–Ni containing catalysts on carbon supports based on IR-pyrolyzed chitosan and detonation nanodiamond (DND) and assessed their activity for the methanol steam reforming process. All of the catalysts have demonstrated rather high activity for this process and good stability over 30 h of continuous operation. The DND-based catalysts have been shown to have better performance, which seems to be due to their larger surface area and the nature of the functional groups on their surface. The activity of the bimetallic catalysts and the nature of the supports have been shown to be interrelated.

作者简介

E. Mironova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: zhilyaeva@ips.ac.ru
119991, Moscow, Russia

A. Payen-Lytkina

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: yaroslav@igic.ras.ru
119991, Moscow, Russia

M. Ermilova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: yaroslav@igic.ras.ru
119991, Moscow, Russia

N. Orekhova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: yaroslav@igic.ras.ru
119991, Moscow, Russia

N. Zhilyaeva

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: kipnis@ips.ac.ru
俄罗斯联邦, Leninsky prosp., 29, Moscow, 119991

M. Efimov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: efimov@ips.ac.ru
119991, Moscow, Russia

A. Vasilev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: efimov@ips.ac.ru
119991, Moscow, Russia

I. Stenina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: stenina@igic.ras.ru
119991, Moscow, Russia

A. Yaroslavtsev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zhilyaeva@ips.ac.ru
119991, Moscow, Russia; 119991, Moscow, Russia

参考

  1. Zhang X. The Development Trend of and Suggestions for China’s Hydrogen Energy Industry // Engineering. 2021. V. 7. P. 719–721. https://doi.org/10.1016/j.eng.2021.04.012
  2. Cuevas F., Zhang J., Latroche M. The Vision of France, Germany, and the European Union on Future Hydrogen Energy Research and Innovation // Engineering. 2021. V. 7. P. 715–718. https://doi.org/10.1016/j.eng.2021.04.010
  3. Filippov S.P., Yaroslavtsev A.B. Hydrogen Energy: Development Prospects and Materials // Russ. Chem. Rev. 2021. V. 90. № 6. P. 627–643. https://doi.org/10.1070/RCR5014
  4. Pollet B.G., Kocha S.S., Staffell I. Current Status of Automotive Fuel Cells for Sustainable Transport // Curr. Opin. Electrochem. 2019. V. 16. P. 90–95. https://doi.org/10.1016/j.coelec.2019.04.021
  5. Hren M., Bozic M., Fakin D., Kleinschek K.S., Gorgieva S. Alkaline Membrane Fuel Cells: Anion Exchange Membranes and Fuels // Sustain. Energy Fuels. 2021. V. 5. P. 604–637. https://doi.org/10.1039/D0SE01373K
  6. Fan L., Tu Z., Chan S.H. Recent Development in Design a State-of-art Proton Exchange Membrane Fuel Cell from Stack to System: Theory, Integration and Prospective // Int. J. Hydrogen Energy. 2023. V. 48. P. 7828–7865. https://doi.org/10.1016/j.ijhydene.2022.11.212
  7. Sazali N., Salleh W.N.W., Jamaludin A.S., Razali M.N.M. New Perspectives on Fuel Cell Technology: A Brief Review // Membranes. 2020. V. 10. P. 99. https://doi.org/10.3390/membranes10050099
  8. Peng X., Kulkarni D., Huang Y., Omasta T.J., Ng B., Zheng Y., Wang L., Lamanna J.M., Hussey D.S., Varcoe J.R., Zenyuk I.V., Mustain W.E. Using Operando Techniques to Understand and Design High Performance and Stable Alkaline Membrane Fuel Cells // Nat. Commun. 2020. P. 3561. https://doi.org/10.1038/s41467-020-17370-7
  9. Thangarasu S., Oh T.H. Progress in Poly(Phenylene Oxide) Based Cation Exchange Membranes for Fuel Cells and Redox Flow Batteries Applications // Int. J. Hydrog. Energy. 2021. V. 46. P. 38381–38415. https://doi.org/10.1016/j.ijhydene.2021.09.081
  10. Kasyanova A.V., Rudenko A.O., Lyagaeva Y.G., Medvedev D.A. Lanthanum-Containing Proton-Conducting Electrolytes with Perovskite Structures // Membr. Membr. Technol. 2021. V. 3. P. 73–97. https://doi.org/10.1134/S2517751621020050
  11. Belenov S., Pavlets A., Paperzh K., Mauer D., Menshikov V., Alekseenko A., Pankov I., Tolstunov M., Guterman V. The PtM/C (M = Co, Ni, Cu, Ru) Electrocatalysts: Their Synthesis, Structure, Activity in the Oxygen Reduction and Methanol Oxidation Reactions, and Durability // Catalysts. 2023. V. 13. P. 243. https://doi.org/10.3390/catal13020243
  12. Gerasimova I., Belenov S., Lyanguzov N., Pankov I., Tolstunov M., Pavlets A. Role of the Potential Range during Stress Testing of Platinum-Containing Electrocatalysts at Elevated Temperature // Catalysts. 2022. V. 12. P. 1179. https://doi.org/10.3390/catal12101179
  13. Апель П.Ю., Велизаров С., Волков А.В., Елисеева Т.В., Никоненко В.В., Паршина А.В., Письменская Н.Д., Попов К.И., Ярославцев А.Б. Фаулинг и деградация мембран в мембранных процессах // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 81–106. https://doi.org/10.1134/S2218117222020031
  14. Parra D., Valverde L., Pino F.J., Patel M.K. A Review on the Role, Cost and Value of Hydrogen Energy Systems for Deep Decarbonisation // Renew. Sust. Energ. Rev. 2019. V. 101. P. 279–294. https://doi.org/10.1016/j.rser.2018.11.010
  15. Алентьев А.Ю., Волков А.В., Воротынцев И.В., Максимов А.Л., Ярославцев А.Б. Мембранные технологии для декарбонизации // Мембраны и мембранные технологии. 2021. Т. 11. № 5. С. 283–303. https://doi.org/10.1134/S2218117221050023
  16. Chen L., Qi Z., Zhang S., Su J., Somorjai G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect // Catalysts. 2020. V. 10. P. 858. https://doi.org/10.3390/catal10080858
  17. Soltani S.M., Lahiri A., Bahzad H., Clough P., Gorbounov M., Yan Y. Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review // Carbon Capture Sci. Technol. 2021. V. 1. P. 100003. https://doi.org/10.1016/j.ccst.2021.100003
  18. Fedotov A.S., Tsodikov M.V., Yaroslavtsev A.B. Hydrogen Production in Catalytic Membrane Reactors Based on Porous Ceramic Converters // Processes. 2022. V. 10. P. 2060. https://doi.org/10.3390/pr10102060
  19. Osman A.I. Catalytic Hydrogen Production from Methane Partial Oxidation: Mechanism and Kinetic Study // Chem. Eng. Technol. 2020. V. 43. № 4. P. 641–648. https://doi.org/10.1002/ceat.201900339
  20. Li L., Dostagir N.H.M.D., Shrotri A., Fukuoka A., Kobayashi H. Partial Oxidation of Methane to Syngas via Formate Intermediate Found for a Ruthenium–Rhenium Bimetallic Catalyst // ACS Catal. 2021. V. 11. № 7. P. 3782–3789. https://doi.org/10.1021/acscatal.0c05491
  21. Kumar S.S., Himabindu V. Hydrogen Production by PEM Water Electrolysis – A Review // Mater. Sci. Technol. 2019. V. 2. № 3. P. 442–454. https://doi.org/10.1016/j.mset.2019.03.002
  22. Kayfeci M., Kecebas A., Bayat M. Hydrogen Production // Solar Hydrogen Production: Processes, Systems and Technologies / Eds Calise F. et al. N.Y.: Elsevier, 2019. P. 45–83. https://doi.org/10.1016/C2017-0-02289-9
  23. Rivard E., Trudeau M., Zaghi K. Hydrogen Storage for Mobility: A Review // Materials. 2019. V. 12. P. 1973. https://doi.org/10.3390/ma12121973
  24. Xu X., Liu E., Zhu N., Liu F., Qian F. Review of the Current Status of Ammonia-Blended Hydrogen Fuel Engine Development // Energies. 2022. V. 15. P. 1023. https://doi.org/10.3390/en15031023
  25. Chen X., Gierlich C.H., Schötz S., Blaumeiser D., Bauer T., Libuda J., Palkovits R. Hydrogen Production Based on Liquid Organic Hydrogen Carriers through Sulfur Doped Platinum Catalysts Supported on TiO2 // ACS Sustain. Chem. Eng. 2021. V. 9. № 19. P. 6561–6573. https://doi.org/10.1021/acssuschemeng.0c09048
  26. Stenina I., Yaroslavtsev A. Modern Technologies of Hydrogen Production // Processes. 2023. V. 11. P. 56. https://doi.org/10.3390/pr11010056
  27. Kumar A., Daw P., Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies Fuels from Biomass, and Related Topics // Chem. Rev. 2022. V. 122. № 1. P. 385–441. https://doi.org/10.1021/acs.chemrev.1c00412
  28. Lytkina A.A., Orekhova N.V., Yaroslavtsev A.B. Catalysts for the Steam Reforming and Electrochemical Oxidation of Methanol // Inorg. Mater. 2018. V. 54. P. 1315–1329. https://doi.org/10.1134/S0020168518130034
  29. Ranjekar A.M., Yadav G.D. Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope // Ind. Eng. Chem. Res. 2021. V. 60. P. 89–113. https://doi.org/10.1021/acs.iecr.0c05041
  30. Chen L., Qi Z., Peng X., Chen J.-L., Pao C.-W., Zhang X., Dun C., Young M., Prendergast D., Urban J.J., Guo J., Somorjai G.A., Su J. Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO2 Supported Single-Site Catalysts // J. Am. Chem. Soc. 2021. V. 143. № 31. P. 12074–12081. https://doi.org/10.1021/jacs.1c03895
  31. Lytkina-Payen A., Tabachkova N., Yaroslavtsev A. Methanol Steam Reforming on Bimetallic Catalysts Based on In and Nb Doped Titania or Zirconia: A Support Effect // Processes. 2022. V. 10. P. 19. https://doi.org/10.3390/pr10010019
  32. Rostami M., Farajollahi A.H., Amirkhani R., Farshchi M.E. A Review Study on Methanol Steam Reforming Catalysts: Evaluation of the Catalytic Performance, Characterizations, and Operational Parameters // AIP Adv. 2023. V. 13. P. 030701. https://doi.org/10.1063/5.0137706
  33. Миронова Е.Ю., Ермилова М.М., Ефимов М.Н., Земцов Л.М., Орехова Н.В., Карпачева Г.П., Бондаренко Г.Н., Жиляева Н.А., Муравьев Д.Н., Ярославцев А.Б. Детонационные наноалмазы как катализаторы парового риформинга этанола // Изв. РАН. Сер. хим. 2013. № 11. С. 2317–2321.
  34. Yaroslavtsev A.B., Stenina I.A. Carbon Coating of Electrode Materials for Lithium-Ion Batteries // Surf. Innovat. 2021. V. 9. № 2–3. P. 92–110. https://doi.org/10.1680/jsuin.20.00044
  35. Муратов Д.Г., Дзидзигури Э.Л., Земцов Л.М., Карпачева Г.П., Ефимов М.Н., Кириллова М.Н. Формирование наночастиц интерметаллидов FeCo в структуре металлоуглеродных нанокомпозитов Fe-Co/C // Российские нанотехнологии. 2015. Т. 10. № 9–10. С. 83–89.
  36. Kaczmarek H., Zawadzki J. Chitosan Pyrolysis and Adsorption Properties of Chitosan and Its Carbonizate // Carbohydr. Res. 2010. V. 345. P. 941–937. https://doi.org/10.1016/j.carres.2010.02.024
  37. Sivaramakrishna D., Bhuvanachandra B., Mallakuntla M.K., Das S.N., Ramakrishna B., Podile A.R. Pretreatment with KOH and KOH-Urea Enhanced Hydrolysis of α-chitin by an Endo-Chitinase from Enterobacter Cloacae Subsp. Cloacae // Carbohydr. Polym. 2020. V. 235. P. 115952. https://doi.org/10.1016/j.carbpol.2020.115952
  38. Shamshina J.L., Berton Paula, Rogers R.D. Advances in Functional Chitin Materials: A Review // ACS Sustain. Chem. Eng. 2019. V. 7. P. 6444–6457. https://doi.org/10.1021/acssuschemeng.8b06372
  39. Gal M.R., Rahmaninia M., Hubbe M.A. A Comprehensive Review of Chitosan Applications in Paper Science and Technologies // Carbohydr. Polym. 2023. V. 309. P. 120665. https://doi.org/10.1016/j.carbpol.2023.120665
  40. Al-Rooqi M.M., Hassan M.M., Moussa Z., Obaid R.J., Suman N.H., Wagner M.H., Natto S.S.A., Ahmed S.A. Advancement of Chitin and Chitosan as Promising Biomaterials // J. Saudi Chem. Soc. 2022. V. 26. P. 101561.
  41. Yan X., Liu Z., Diao M., Zhang T. Effect of Molecular Weight of Chitosan on Properties of Chitosan-Zn Nanoparticles // Food Bioscience. 2022. V. 50. P. 102206. https://doi.org/10.1016/j.jscs.2022.101561
  42. Fan S., Fan X., Wang S., Li B., Zhou N., Xu H. Effect of Chitosan Modification on the Properties of Magnetic Porous Biochar and Its Adsorption Performance towards Tetracycline and Cu2+ // Sustain. Chem. Pharm. 2023. V. 33. P. 101057. https://doi.org/10.1016/j.scp.2023.101057
  43. Zhao W., Shanjian L., Yin M., He Z., Bi Di. Co-pyrolysis of Cellulose with Urea and Chitosan to Produce Nitrogen-Containing Compounds and Nitrogen-Doped Biochar: Product Distribution Characteristics and Reaction Path Analysis // J. Anal. Appl. Pyrol. 2023. V. 169. P. 105795. https://doi.org/10.1016/j.jaap.2022.105795
  44. Vasilev A., Efimov M., Bondarenko G., Kozlov V., Dzidziguri E., Karpacheva G. Thermal Behavior of Chitosan as a Carbon Material Precursor under IR Radiation // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 693. P. 012002. https://doi.org/10.1088/1757-899X/693/1/012002
  45. Биндюг Д.В., Васильев А.А., Дзидзигури Э.Л., Ефимов М.Н., Карпачева Г.П. Влияние исходного содержания металлов на формирование наночастиц твердого раствора Fe–Co в ИК-пиролизованной матрице хитозана // Журн. общ. химии. 2021. Т. 91. № 1. С. 149–156. https://doi.org/10.31857/S0044460X21010169
  46. Vasilev A.A., Efimov M.N., Bondarenko G.N., Muratov D.G., Dzidziguri E.L., Ivantsov M.I., Kulikova M.V., Karpacheva G.P. Fe-Co Alloy Nanoparticles Supported on IR Pyrolyzed Chitosan as Catalyst for Fischer-Tropsch Synthesis // Chem. Phys. Lett. 2019. V. 730. P. 8–13. https://doi.org/10.1016/j.cplett.2019.05.034
  47. Mironova E.Yu., Ermilova M.M., Orekhova N.V., Muraviev D.N., Yaroslavtsev A.B. Production of High Purity Hydrogen by Ethanol Steam Reforming in Membrane Reactor // Catal. Today. 2014. V. 236. P. 64–69. https://doi.org/10.1016/j.cattod.2014.01.014
  48. Миронова Е.Ю., Ермилова М.М., Орехова Н.В., Басов Н.Л., Ярославцев А.Б. Получение водорода паровым риформингом этанола на Pd-, Pt-, Ru-, Ni-содержащих наноалмазах в традиционном и мембранном реакторах // Мембраны и мембранные технологии. 2019. Т. 9. № 4. С. 286–294.
  49. Pandey K., Dwivedi M.M., Sanjay S.S. A Brief Review on Synthesis and Application of Polymer–Nanodiamond Composite // Mater. Today: Proc. 2022. V. 68. P. 2772–2780. https://doi.org/10.1016/j.matpr.2022.09.032
  50. Huang H., Liu M., Tuo X., Chen J., Mao L., Wen Y., Tian J., Zhou N., Zhang X., Wei Y. One-Step Fabrication of PEGylated Fluorescent Nanodiamonds through the Thiol-Ene Click Reaction and Their Potential for Biological Imaging // Appl. Surf. Sci. 2018. V. 439. P. 1143–1151. https://doi.org/10.1016/j.apsusc.2017.12.233
  51. López-Carballeira D., Cammarata A., Polcar T. Revisiting the Electronic Nature of Nanodiamonds // Diamond Relat. Mater. 2021. V. 120. P. 108627. https://doi.org/10.1016/j.diamond.2021.108627
  52. Mironova E.Yu., Lytkina A.A., Ermilova M.M., Efimov M.N., Zemtsov L.M., Orekhova N.V., Karpacheva G.P., Bondarenko G.N., Yaroslavtsev A.B., Muraviev D.N. Ethanol and Methanol Steam Reforming on Transition Metal Catalysts Supported on Detonation Synthesis Nanodiamonds for Hydrogen Production // Int. J. Hydrogen Energy. 2015. V. 40. № 8. P. 3557–3565. https://doi.org/10.1016/j.ijhydene.2014.11.082
  53. Бондаренко Г.Н., Ермилова М.М., Ефимов М.Н., Земцов Л.М., Карпачева Г.П., Миронова Е.Ю., Орехова Н.В., Родионов А.С., Ярославцев А.Б. Изучение парового риформинга этанола на нанокатализаторах Pt-Ru/ДНА с применением метода ИК-спектроскопии в режиме in situ // Российские нанотехнологии. 2016. Т. 11. № 1–12. С. 62–69.
  54. Kurtz M., Wilmer H., Genger T., Hinrichsen O., Muhler M. Deactivation of Supported Copper Catalysts for Methanol Synthesis // Catal. Lett. 2003. V. 86. P. 77–80. https://doi.org/10.1023/A:1022663125977

补充文件

附件文件
动作
1. JATS XML
2.

下载 (582KB)
3.

下载 (61KB)
4.

下载 (120KB)
5.

下载 (76KB)

版权所有 © Е.Ю. Миронова, А.А. Пайен-Лыткина, М.М. Ермилова, Н.В. Орехова, Н.А. Жиляева, М.Н. Ефимов, А.А. Васильев, И.А. Стенина, А.Б. Ярославцев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».