Effect of Discharge Duration on Characteristics of FeCrWMoCB Metallic Glass Coatings
- Authors: Burkov A.A.1, Konevtsov L.A.1, Krutikova V.O.2
-
Affiliations:
- Institute of Materials Science, Far East Branch, Russian Academy of Sciences (separate subdivision of the Khabarovsk Federal Research Center, Far East Branch, Russian Academy of Sciences)
- Kosygin Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences
- Issue: Vol 59, No 7 (2023)
- Pages: 740-749
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/231873
- DOI: https://doi.org/10.31857/S0002337X23070011
- EDN: https://elibrary.ru/PUOGSC
- ID: 231873
Cite item
Abstract
We have studied the effect of discharge pulse duration in the electrospark deposition process on the structure and properties of FeCrWMoCB metallic glass coatings. The coating thickness has been shown to rise from 19.1 to 39 μm with increasing pulse duration. The heat resistance of the coated samples over 100 h of testing at 700°C was 27 to 176 times that of the steel and it increased with increasing pulse duration. The hardness of the coatings ranged from 11.3 to 11.9 GPa. The coatings have been shown to reduce the friction coefficient and wear of the steel by a factor of up to 3.7 and improve its corrosion resistance.
Keywords
About the authors
A. A. Burkov
Institute of Materials Science, Far East Branch, Russian Academy of Sciences (separate subdivision of the Khabarovsk Federal Research Center, Far East Branch, Russian Academy of Sciences)
Email: konevts@narod.ru
680000, Khabarovsk, Russia
L. A. Konevtsov
Institute of Materials Science, Far East Branch, Russian Academy of Sciences (separate subdivision of the Khabarovsk Federal Research Center, Far East Branch, Russian Academy of Sciences)
Email: konevts@narod.ru
680000, Khabarovsk, Russia
V. O. Krutikova
Kosygin Institute of Tectonics and Geophysics, Far East Branch, Russian Academy of Sciences
Author for correspondence.
Email: konevts@narod.ru
680000, Khabarovsk, Russia
References
- Greer A.L. Metallic Glasses on the Threshold // Mater. Today. 2009. V. 12 № 1–2. P. 14–22. https://doi.org/10.1016/S1369-7021(09)70037-9
- Garcia-Herrera J.E., Henao J., Espinosa-Arbelaez D.G., Gonzalez-Carmona J.M., Felix-Martinez C., Santos-Fernandez R., Alvarado-Orozco J.M. Laser Cladding Deposition of a Fe-Based Metallic Glass on 304 Stainless Steel Substrates // J. Therm. Spray Technol. 2022. V. 31 № 4. P. 968–979. https://doi.org/10.1007/s11666-022-01325-z
- Kruzic J.J. Bulk Metallic Glasses as Structural Materials: A Review // Adv. Eng. Mater. 2016. V. 18. № 8. P. 1308–1331.
- Parsons R., Ono K., Li Z., Kishimoto H., Shoji T., Kato A., Suzuki K. Prediction of Density in Amorphous and Nanocrystalline Soft Magnetic Alloys: A Data Mining Approach // J. Alloys Compd. 2021. V. 859. P. 157845.
- Nabiałek M., Jeż B., Błoch K., Pietrusiewicz P., Gondro J. The Effect of the Cobalt-Content on the Magnetic Properties of Iron-Based Amorphous Alloys // J. Magn. Magn. Mater. 2019. V. 477. P. 214–219. https://doi.org/10.1016/j.jmmm.2019.01.073
- Guo H., Wu N.C., Zhang Y.L., Zhang S.D., Sun W.H., Wang J.Q. Influence of Coating Thickness on the Impact Damage Mode in Fe-Based Amorphous Coatings // Surf. Coat. Technol. 2020. V. 390. P. 125650. https://doi.org/10.1016/j.surfcoat.2020.125650
- Namazi H., Akrami A., Haghighi R., Delaviz A., Kulish V.V. Analysis of the Influence of Element’s Entropy on the Bulk Metallic Glass (BMG) Entropy, Complexity, and Strength // Metall. Mater. Trans. 2017. V. 48. № 2. P. 780–788.
- Louzguine-Luzgin D.V., Greer A.L., Lu A.K.A., Trifonov A.S., Ivanov Y.P., Lubenchenko A.V. Shear-Induced Chemical Segregation in a Fe-Based Bulk Metallic Glass at Room Temperature // Sci. Rep. 2021. V. 11. № 1. https://doi.org/10.1038/s41598-021-92907-4
- Kumar A., Nayak S.K., Laha T. Comparative Study on Wear and Corrosion Behavior of Plasma Sprayed Fe73Cr2Si11B11C3 and Fe63Cr9P5B16C7 Metallic Glass Composite Coatings // J. Therm. Spray Technol. 2022. P. 1–15. https://doi.org/10.1007/s11666-021-01280-1
- Lin T., Sheu H., Lee C., Lee H. The Study of Mechanical Properties and Corrosion Behavior of the Fe-Based Amorphous Alloy Coatings Using High Velocity Oxygen Fuel Spraying // J. Alloys Compd. 2021. V. 867. P. 159132. https://doi.org/10.1016/j.jallcom.2021.159132
- Liang D., Zhou Y., Liu X., Zhou Q., Huang B., Zhang E.,Chen Q., Shen J. Wettability and Corrosion Performance of Arc-Sprayed Fe-Based Amorphous Coatings // Surf. Coat. Technol. 2022. V. 433. P. 128129. https://doi.org/10.1016/j.surfcoat.2022.128129
- Jiang L., Chen Z.Q., Lu H.B., Ke H.B., Yuan Y., Dong Y.M., Meng X.K. Corrosion Protection of NiNb Metallic Glass Coatings for 316SS by Magnetron Sputtering // J. Mater. Sci. Technol. 2021. V. 79. P. 88–98. https://doi.org/10.1016/j.jmst.2020.12.004
- Chen Q.J., Guo S.B., Yang X.J., Zhou X.L., Hua X.Z., Zhu X.H., Duan Z. Study on Corrosion Resistance of Fe-Based Amorphous Coating by Laser Cladding in Hydrochloric Acid // Phys. Procedia. 2013. V. 50. P. 297–303. https://doi.org/10.1016/j.phpro.2013.11.048
- Burkov A.A., Chigrin P.G. Effect of Tungsten, Molybdenum, Nickel and Cobalt on the Corrosion and Wear Performance of Fe-based Metallic Glass Coatings // Surf. Coat. Technol. 2018. V. 351. P. 68–77. https://doi.org/10.1016/j.surfcoat.2018.07.078
- Бурков А.А., Зайцев А.В. Синтез электродных материалов на основе железа методом порошковой металлургии // Бюллетень научных сообщений. 2016. № 21. С. 36–40.
- Бурков А.А., Кулик М.А., Крутикова В.О. Электроискровое осаждение высокоэнтропийных CrFeCoNiCu покрытий на сталь 35 в смеси гранул из чистых металлов // Сварочное производство. 2019. № 10. С. 21–27.
- Пячин С.А., Бурков А.А., Каминский О.И., Зайкова Е.Р. Плавление титанового сплава под действием электрических разрядов различной длительности // Изв. вузов. Физика. 2018. Т. 61. № 12 (732). С. 83–89.
- Nikolenko S.V., Syui N.A. Investigation of Coatings Produced by the Electrospark Machining Method of Steel 45 with Electrodes Based on Carbides of Tungsten and Titanium // Prot. Met. Phys. Chem. Surf. 2017. V. 53. № 5. P. 889–894. https://doi.org/10.1134/S207020511705015X
- Hasanabadi M.F., Ghaini F.M., Ebrahimnia M., Shahverdi H.R. Production of Amorphous and Nanocrystalline Iron Based Coatings by Electro-Spark Deposition Process // Surf. Coat. Technol. 2015. V. 270. P. 95–101. https://doi.org/10.1016/j.surfcoat.2015.03.016
- Korkmaz K. Investigation and Characterization of Electrospark Deposited Chromium Carbide-Based Coating on the Steel // Surf. Coat. Technol. 2015. V. 272. P. 1–7. https://doi.org/10.1016/j.surfcoat.2015.04.033
- Kumar A., Nayak S.K., Laha T. Comparative Study on Wear and Corrosion Behavior of Plasma Sprayed Fe73Cr2Si11B11C3 and Fe63Cr9P5B16C7 Metallic Glass Composite Coatings // J. Therm. Spray Technol. 2022. P. 1–15. https://doi.org/10.1007/s11666-021-01280-1
- Ma H., Li D., Li J. Effect of Spraying Power on Microstructure, Corrosion and Wear Resistance of Fe-Based Amorphous Coatings // J. Therm. Spray Technol. 2022. V. 31. № 5. P. 1683-1694. https://doi.org/10.1007/s11666-022-01403-2
- Li Y.C., Zhang W.W., Wang Y., Zhang X.Y., Sun L.L. Effect of Spray Powder Particle Size on the Bionic Hydrophobic Structures and Corrosion Performance of Fe-Based Amorphous Metallic Coatings // Surf. Coat. Technol. 2022. V. 37. P. 128377. https://doi.org/10.1016/j.surfcoat.2022.128377
- Бурков А.А. Влияние энергии разрядных импульсов при электроискровом осаждении аморфных покрытий // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 5. С. 526–536.
Supplementary files
