Preparation and Properties of Transparent Scandium Oxide-Modified Nd:YAG Ceramics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied the effect of Sc2O3 as a modifying additive on the formation of weakly agglomerated single-phase nanopowders of doped yttrium aluminum garnet with the laser composition Y2.97Nd0.03ScAl4O12 (Nd:YSAG), the fundamental aspects of the preparation of transparent ceramics from the modified powders, and the microstructure and properties of the ceramics. Carbonate precursor powders with a specific surface area of 285 m2/g, synthesized via quantitative chemical coprecipitation of metal cations from an aqueous solution of hydrochloric acid salts in the presence of high molecular weight surfactants have been characterized by high-temperature X-ray diffraction. The results demonstrate for the first time that, during the thermal decomposition of the carbonate precursor, the structure of Nd:YSAG is formed in the temperature range 850–1000°C in the form of a metastable nonstoichiometric cubic aluminate, (Y,Nd)ScxAl1–xO3, with a garnet-like structure. In the range 1100–1150°C, it reacts with the Al2O3 resulting from the decomposition of the precursor to form Nd:YSAG. The synthesized weakly agglomerated spherical nanoparticles and submicron particles with a controlled stable size in the range 100 to 200 nm were vacuum-sintered to give transparent ceramics with an average grain size of 3 μm and high transmission (up to 78%) in the visible spectral region.

About the authors

T. Yu. Kolomiets

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: imet@ultra.imet.ac.ru
119991, Moscow, Russia

G. B. Tel’nova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: imet@ultra.imet.ac.ru
119991, Moscow, Russia

A. A. Ashmarin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: imet@ultra.imet.ac.ru
119991, Moscow, Russia

K. A. Solntsev

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: imet@ultra.imet.ac.ru
119991, Moscow, Russia

References

  1. Xiao Z., Yu S., Li Y., Ruan S., Kong L.B., Huang Q., Huang Z., Zhou K., Su H., Yao Z., Que W., Liu Y., Zhang T., Wang J., Liu P., Shen D., Allix M., Zhang J., Tang D. Materials Development and Potential Applications of Transparent Ceramics: A Review // Mater. Sci. Eng., R. 2020. V. 139. P. 66. https://doi.org/10.1016/j.mser.2019.100518
  2. Wang S.F., Zhang J., Luo D.W., Gu F., Tang D.Y., Dong Z.L., Tan G.E.B., Que W.X., Zhang T.S., Li S., Kong L.B. Transparent Ceramics: Processing, Materials and Applications // Prog. Solid State Chem. 2013. V. 41. № 1. P. 20–54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002
  3. Li J.-G., Ikegami T., Lee J.-H., Mori T., Yajima Y. Co-Precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: the Effect of Precipitant // J. Eur. Ceram. Soc. 2000. V. 20. № 14. P. 2395–2405. https://doi.org/10.1016/S0955-2219(00)00116-3
  4. Тельнова Г.Б., Коломиец Т.Ю., Коновалов А.А., Ашмарин А.А., Дуденков И.В., Солнцев К.А. Фазовые превращения при синтезе Y3Al5O12:Nd // Журн. неорган. химии. 2015. Т. 60. № 2. С. 163–163
  5. Тельнова Г.Б., Коломиец Т.Ю., Ситников А.И., Солнцев К.А. Влияние условий синтеза карбонатных прекурсоров на процесс формирования монодисперсных нанопорошков ИАГ: Nd3+ // Неорган. материалы. 2015. Т. 51. № 2. С. 184–192. https://doi.org/10.7868/S0002337X15020165
  6. Коломиец Т.Ю., Тельнова Г.Б., Ашмарин А.А., Челпанов В.И., Солнцев К.А. Синтез и спекание субмикронных частиц ИАГ:Nd, полученных из карбонатных прекурсоров // Неорган. материалы. 2017. Т. 53. № 8. С. 890–899. https://doi.org/10.7868/S0002337X17080152
  7. Li J.-G., Ikegami T., Lee J.-H., Mori T. Well-Sinterable Y3Al5O12 Powder from Carbonate Precursor // J. Mater. Res. 2000. V. 15. № 7. P. 1514–1523. https://doi.org/10.1557/JMR.2000.0217
  8. Gandhi A.S., Levi C.G. Phase Selection in Precursor-Derived Yttrium Aluminum Garnet and Related Al2O3–Y2O3 Compositions // J. Mater. Res. 2005. V. 20. № 4. P. 1017–1025. https://doi.org/10.1557/JMR.2005.0133
  9. Allik T.H., Morrison C.A., Gruber J.B., Kokta M.R. Crystallography, Spectroscopic Analysis, and Lasing Properties of Nd3+:Y3Sc2Al3O12 // Phys. Rev. B: Condens. Matter. 1990. V. 41. № 1. P. 21–30. https://doi.org/10.1103/PhysRevB.41.21
  10. Feng T., Shi J., Chen J., Jiang D. Fluorescence Emission Enhancement of Transparent Nd:YSAG Ceramics by Sc2O3 Doping // Opt. Soc. Am. B: Opt. Phys. 2005. V. 22. № 10. P. 2134–2137. https://doi.org/10.1364/JOSAB.22.002134
  11. Liu Y., Hu S., Zhang Y., Wang Z., Zhou G., Wang S. Crystal Structure Evolution and Luminescence Property of Ce3+-Doped Y2O3–Al2O3–Sc2O3 Ternary Ceramics // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 840–846. https://doi.org/10.1016/j.jeurceramsoc.2019.10.022
  12. Feng Y., Toci G., Patrizi B., Pirri A., Hu Z., Chen X., Wei J., Pan H., Li X., Zhang X., Su S., Vannini M., Li J. Fabrication, Microstructure, and Optical Properties of Tm:Y3ScAl4O12 Laser Ceramics // J. Am. Ceram. Soc. 2020. V. 103. № 3. P. 1819–1830. https://doi.org/10.1111/jace.16873
  13. Tarala V.A., Shama M.S., Chikulina I.S., Kuznetsov S.V., Malyavin F.F., Vakalov D.S., Kravtsov A.A., Pankov M.A. Estimation of Sc3+ Solubility in Dodecahedral and Octahedral Sites in YSAG:Yb // J. Am. Ceram. Soc. 2019. V. 102. № 8. P. 4862–4873. https://doi.org/10.1111/jace.16294
  14. Feng Y., Toci G., Pirri A., Patrizi B., Hu Z., Wei J., Pan H., Zhang X., Li X., Su S., Vannini M., Li J. Fabrication, Microstructure, and Optical Properties of Yb:Y3ScAl4O12 Transparent Ceramics with Different Doping Levels // J. Am. Ceram. Soc. 2020. V. 103. № 1. P. 224–234. https://doi.org/10.1111/jace.16691
  15. Shoji I., Kurimura S., Sato Y., Taira T., Ikesue A., Yoshida K. Optical Properties and Laser Characteristics of Highly Nd3+-Doped Y3Al5O12 Ceramics // Appl. Phys. Lett. 2000. V. 77. № 7. P. 939–941. https://doi.org/10.1063/1.1289039
  16. Yamaguchi O., Takeoka K., Hirota K., Takano H., Hayashida A. Formation of Alkoxy-Derived Yttrium Aluminium Oxides // J. Mater. Sci. 1992. V. 27. № 5. P. 1261–1264. https://doi.org/10.1007/BF01142034

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (86KB)
3.

Download (44KB)
4.

Download (38KB)
5.

Download (64KB)
6.

Download (69KB)
7.

Download (1MB)
8.

Download (1MB)
9.

Download (113KB)
10.

Download (220KB)

Copyright (c) 2023 Т.Ю. Коломиец, Г.Б. Тельнова, А.А. Ашмарин, К.А. Солнцев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».