Hot Isostatic Pressing-Induced Structural Changes in MgAl2O4 Ceramics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnesium aluminate spinel (MgAl2O4) ceramics have been subjected to hot isostatic pressing. The process led to a 0.28% increase in the density of the ceramics compared to samples prepared by primary hot pressing. IR spectroscopy has been used to evaluate structural changes in the densified material. In the IR reflection spectrum measured from 40 to 1000 cm–1, the increase in density showed up as a decrease in the intensity of some bands due to isolated vibrational modes in the MgO4 and AlO4 tetrahedra. The effect was attributed to vibrational mode mixing in the tetrahedral structural units in the densified ceramics. This finding indicates that consolidation of the material is accompanied by an increase in the inner connectivity of crystallites. At the same time, the frequency and intensity of the stretching modes of the Al–O groups in the AlO6 octahedra remained unchanged after isostatic pressing, suggesting that the heat treatment caused no stoichiometric distortion.

About the authors

A. A. Dunaev

Vavilov State Optical Institute

Email: chmel@mail.ioffe.ru
192171, St. Petersburg, Russia

S. B. Eron’ko

Vavilov State Optical Institute

Email: chmel@mail.ioffe.ru
192171, St. Petersburg, Russia

B. A. Ignatenkov

Vavilov State Optical Institute

Email: chmel@mail.ioffe.ru
192171, St. Petersburg, Russia

A. I. Markova

Tver State University

Email: chmel@mail.ioffe.ru
170002, Tver, Russia

M. V. Narykova

Ioffe Institute

Email: chmel@mail.ioffe.ru
194021, St. Petersburg, Russia

P. M. Pakhomov

Tver State University

Email: chmel@mail.ioffe.ru
170002, Tver, Russia

S. D. Khizhnyak

Tver State University

Email: chmel@mail.ioffe.ru
170002, Tver, Russia

A. E. Chmel’

Ioffe Institute

Author for correspondence.
Email: chmel@mail.ioffe.ru
194021, St. Petersburg, Russia

References

  1. Ganesh I. A Review On Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications // Int. Mater. Rev. 2013. V. 58. № 2. P. 63–112. https://doi.org/10.1179/1743280412Y.0000000001
  2. Габелков С.В., Тарасов Р.В., Полтавцев Н.С., Курило Ю.П., Старолат М.П., Андриевская Н.Ф., Миронова А.Г., Дедовская Е.Г., Дитвиненко Л.М., Белкин Ф.В. Фазовые превращения при низкотемпературном синтезе MgAl2О4 // Неорган. материалы. 2007. Т. 43. № 4. С. 462–470.
  3. Garner F.A., Hollenberg G.W., Hoobs F.D., Ryan J.L., Li Z., Black C.A., Bradt R.C. Dimension Stability, Optical and Elastic Properties of MgAl2O4 Spinel Irradiated in FFTF to Very High Exposures // J. Nucl. Mater. 1994. V. 212–215. P. 1087–1090. https://doi.org/0.1016/0022-3115(94)91000-6
  4. Sokol M., Ratzker B., Kalabukhov S., Dariel M.P., Galun E., Frage N. Transparent Polycrystalline Magnesium Aluminate Spinel Fabricated By Spark Plasma Sintering // Adv. Mater. 2018. V. 30. P. 1706283. https://doi.org/10.1002/adma.201706283
  5. Gajdowski K., Böhmler J., Lorgouilloux Y., Lemonnier S., d’Astorg S., Barraud E., Leriche A. Influence of Post-HIP Temperature on Microstructural and Optical Properties of Pure MgAl2O4 Spinel: From Opaque to Transparent Ceramics // J. Eur. Ceram. Soc. 2017. V. 37. P. 5347–5351. https://doi.org/10.1016/j.jeurceramsoc.2017.07.031
  6. Tsai D.S., Wang C.T., Yang S.J. Hot Isostatic Pressing of MgAl2O4 Spinel Infrared Windows // Mater. Manuf. Processes. 1994. V. 9. P. 709–719. https://doi.org/10.1080/10426919408934941
  7. Shi Zh., Zhao Q., Guo B., Ji T., Wang H. A Review on Processing Polycrystalline Magnesium Aluminate Spinel (MgAl2O4): Sintering Techniques, Material Properties and Machinability // Mater. Design. 2020. V. 193. P. 10858. https://doi.org/10.1016/j.matdes.2020.108858
  8. Gilde G., Patel P., Patterson P., Blodgett D., Duncan D., Hahn D. Valuation of Hot Pressing and Hot Isostatic Pressing Parameters on The Optical Properties of Spinel // J. Am. Ceram. Soc. 2005. V. 88. P. 2747–2751. https://doi.org/10.1111/j.1551-2916.2005.00527.x
  9. Толстикова Д.В., Михайлов М.Д., Смирнов В.М. Особенности синтеза наночастиц алюмомагниевой шпинели в расплаве хлорида калия // Журн. общ. химии. 2014. Т. 84. № 10. С. 1744–1745.
  10. Chmel A., Eronko S.B., Kondyrev A.M., Nazarova V.Ya. Optical Resistance of Sapphire // J. Mater. Sci. 1993. V. 28. P. 4673–4680. https://doi.org/10.1007/BF00414257
  11. Barker A.S. Infrared Lattice Vibrations and Dielectric Dispersion in Corundum // Phys. Rev. 1963. V. 132. P. 1474–1481. https://doi.org/10.1103/PhysRev.132.1474
  12. Петрик В.И. Броневые оптические материалы. Шпинель. Иркутск: Областная типография № 1. 2011. С. 335.
  13. Slotznick S.P., Shim S.-H. In Situ Raman Spectroscopy Measurements of MgAl2O4 Spinel Up to 1400°C // Am. Mineral. 2008. V. 93. P. 470–476. https://doi.org/10.2138/am.2008.2687
  14. Fu P., Lu W. Lei W. Wu K., Xu Y., Wu J. Thermal Stability and Microstructure Characterization of MgAl2O4 Nanoparticles Synthesized by Reverse Microemulsion Method // Mater. Res. 2013. V. 16. P. 844–849. https://doi.org/10.1590/S1516-14392013005000062
  15. Ahmad S.M., Hussain T., Ahmad R., Siddiqui J., Ali D. Synthesis and Characterization of Magnesium Aluminate (MgAl2O4) Spinel (MAS) Thin Films // Mater. Res. Express. 2018. V. 5. P. 016415. https://doi.org/10.1088/2053-1591/aaa828
  16. Radishevskaya N.I., Nazarova A.Yu., Lvov O.V., Kasatsky N.G., Kitler V.D. Synthesis of Magnesium Aluminate Spinel in the MgO–Al2O3–Al System Using the SHS Method // J. Phys.: Conf. Ser. 2019. V. 1214. P. 012019. https://doi.org/10.1088/1742-6596/1214/1/012019
  17. Radishevskaya N., Lepakova O., Karakchieva N., Nazarova A., Afanasiev N., Godymchuk A., Gusev A. Self-Propagating High Temperature Synthesis of TiB2–MgAl2O4 // Comp. Met. 2017. № 295. P. 1–7. https://doi.org/10.3390/met7080295
  18. Pei L.Zh., Yin W.Y., Wang J.F., Chen J., Fan Ch.G., Zhang Q.F. Low Temperature Synthesis of Magnesium Oxide and Spinel Powders by a Sol-Gel Process // Mater. Res. 2010. V. 13. P. 339–343. https://doi.org/10.1590/S1516-4392010000300010
  19. Nassar M.Y., Ahmed I.S., Samir I. A Novel Synthetic Route for Magnesium Aluminate (MgAl2O4) Nanoparticles Using Sol–Gel Auto Combustion Method and Their Photocatalytic Properties // Spectrochim. Acta, Part A. 2014. V. 131. P. 329–334. https://doi.org/10.1016/j.saa.2014.04.040

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (129KB)
3.

Download (108KB)

Copyright (c) 2023 А.А. Дунаев, С.Б. Еронько, Б.А. Игнатенков, А.И. Маркова, М.В. Нарыкова, П.М. Пахомов, С.Д. Хижняк, А.Е. Чмель

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».