Kinetics and Mechanism of Calcium Hydride Synthesis of the Intermetallic Compound Cr2Ta

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents results on the kinetics of the synthesis of the Cr2Ta intermetallic compound via calcium hydride reduction and the influence of various technological parameters on this process. We have observed anomalous Cr2Ta formation kinetics, in particular, an explosive increase in the amount of this phase as a certain synthesis temperature is reached. The apparent activation energy for the calcium hydride synthesis of the Cr2Ta intermetallic compound has been determined to be ~291 kJ/mol, approaching the activation energy for heterodiffusion in various Laves phases (Cr2Ti, Cr2Nb, Co2Nb, and Fe2Ti). The results obtained in this study are used to gain insight into the mechanism of the calcium hydride synthesis of Cr2Ta. Calcium hydride reduction has been shown to be potentially attractive for the preparation of refractory intermetallics. Further work in this direction will make it possible to obtain high-quality powder and compact articles from it.

作者简介

A. Guryanov

Tula State University; LCC Metsintez

Email: alex19021861@gmail.com
300012, Tula, Russia; 300034, Tula, Russia

S. Yudin

Tula State University; LCC Metsintez

Email: alex19021861@gmail.com
300012, Tula, Russia; 300034, Tula, Russia

A. Kasimtsev

Tula State University; LCC Metsintez

Email: alex19021861@gmail.com
300012, Tula, Russia; 300034, Tula, Russia

S. Volodko

Tula State University; LCC Metsintez

Email: alex19021861@gmail.com
300012, Tula, Russia; 300034, Tula, Russia

I. Alimov

Tula State University; LCC Metsintez

Email: alex19021861@gmail.com
300012, Tula, Russia; 300034, Tula, Russia

E. Evstratov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alex19021861@gmail.com
119334, Moscow, Russia

参考

  1. Bei H., Pharr G.M., George E.P. A Review of Directionally Solidified Intermetallic Composites for High-Temperature Structural Applications // J. Mater. Sci. 2004. V. 39. P. 3975–3984. https://doi.org/10.1023/B:JMSC.0000031479.32138.84
  2. Anton D.L., Shah D.M., Duhl D.N., Giamei A.F. Selecting High-Temperature Structural Intermetallic Compounds: The Engineering Approach // JOM. 1989. № 9. P. 12–16. https://doi.org/10.1007/BF03220324
  3. Duquette D.J., Stoloff N.S. Aerospace Applications of Intermetallics // Key Eng. Mater. 1992. V. 77–78. P. 289–304.https://doi.org/10.4028/www.scientific.net/KEM.77-78.289
  4. Liu C.T. Recent Advances in Ordered Intermetallics // Mater. Chem. Phys. 1995. V. 42. № 2. P. 77–86.
  5. Meier G.H., Pettit F.S. High Temperature Oxidation and Corrosion of Intermetallic Compounds // Mater. Sci. Technol.1992. V. 8. № 4. P. 331–338.https://doi.org/10.1179/mst.1992.8.4.331
  6. Intermetallic Compounds. Structural Applications of Intermetallic Compounds / Eds. Westbrook J.H., Fleischer R.L. N. Y.: Wiley, 2000. V. 3. 346 p.
  7. Brady M.P., Tortorelli P.F., Walker L.R. Correlation of Alloy Microstructure with Oxidation Behavior in Chromia-Forming Intermetallic-Reinforced Cr Alloys // Mater. High Temp. 2000. V. 17. № 2. P. 235–241.https://doi.org/10.1179/mht.2000.17.2.009
  8. Brady M.P., Zhu J.H., Liu C.T., Tortorelli P.F., Walker L.R. Oxidation Resistance and Mechanical Properties of Laves Phase Reinforced Cr in-situ Composites // Intermetallics. 2000. V. 8. P. 1111–1118.https://doi.org/10.1016/S0966-9795(00)00046-7
  9. Юдин С.Н., Касимцев А.В., Володько С.С., Гурьянов А.М. Металлотермический синтез фазы Лавеса TaCr2 из оксидного сырья // Цв. металлы. 2020. № 11. С. 48–53.https://doi.org/10.17580/tsm.2020.11.07
  10. Venkatraman M., Neumann J.P. The Cr–Ta (Chromium-Tantalum) System // Bull. Alloy Phase Diagrams. 1987. V. 8. № 2. P. 112–116.https://doi.org/10.1007/BF02873190
  11. Shelekhov E.V., Sviridova T.A. Programs for X-ray Analysis of Polycrystals // Met. Sci. Heat Treat. 2000. V. 42. № 8. P. 309–313.https://doi.org/10.1007/BF02471306
  12. Rietveld H.M. A Profile Refinement Method for Nuclear and Magnetic Structures // J. Appl. Crystallogr. 1969. V. 2. № 2. P. 65–71.https://doi.org/10.1107/S0021889869006558
  13. Касимцев А.В., Жигунов В.В. Фазовые и структурные превращения при получении порошков интерметаллидов // ПМиФП. 2009. № 3. С. 5–12.
  14. Naoi D., Kajihara M. Growth Behavior of Fe2Al5 during Reactive Diffusion between Fe and Al at Solid-State Temperatures // Mater. Sci. Eng., A. 2007. V. 459. № 1–2. P. 375–382.https://doi.org/10.1016/j.msea.2007.01.099
  15. Horiuchi S., Blanchard R. Boron Diffusion in Polycrystalline Silicon Layers // Solid-State Electron. 1975. V. 18. № 6. P. 529–532. https://doi.org/10.1016/0038-1101(75)90029-5
  16. Liu J.C., Mayer J.W., Barbour J.C. Kinetics of NiAl3 and Ni2Al3 Phase Growth on Lateral Diffusion Couples // J. Appl. Phys. 1988. V. 64. № 2. P. 656–662. https://doi.org/10.1063/1.341957
  17. Меерсон Г.А., Колчин О.П. О механизме восстановления окислов циркония и титана гидридом кальция // Атомная энергия. 1957. Т. 2. Вып. 3. С. 253–259.
  18. Касимцев А.В., Левинский Ю.В. Гидридно-кальциевые порошки металлов, интерметаллидов, тугоплавких соединений и композиционных материалов. М.: Издательство МИТХТ, 2012. 247 с.
  19. Dupin N., Ansara L. Thermodynamic Assessment of the Cr–Ta System // J. Phase Equilib. 1993. V. 14. № 4. P. 451–456.https://doi.org/10.1007/BF02671963
  20. Dean J.A. Lange’s Handbook of Chemistry. Fifteenth edition. N. Y.: McGraw-Hill, 1999. 1424 p.
  21. Rogachev A.S., Gryadunov A.N., Kochetov N.A., Schukin A.S., Baras F., Politano O. High-Entropy-Alloy Binder for TiC-Based Cemented Carbide by SHS Method // Int. J. Self-Propag. High-Temp. Synth. 2019. V. 28. № 3. P. 196–198.https://doi.org/10.3103/S1061386219030117
  22. Rogachev A.S., Vadchenko S.G., Kochetov N.A., Kovalev D.Y., Kovalev I.D., Shchukin A.S., Gryadunov A.N., Baras F., Politano O. Combustion Synthesis of TiC-based Ceramic-Metal Composites with High Entropy Alloy Binder // J. Eur. Ceram. Soc. 2020. V. 40. № 7. P. 2527–2532.https://doi.org/10.1016/j.jeurceramsoc.2019.11.059
  23. Vignoul G.E., Tien J.K., Sanchez J.M. Characterization of the Deformation Behavior of the Cr2Nb Ordered Intermetallic System // Mater. Sci. Eng., A. 1993. V. 170. № 1–2. P. 177–183.
  24. Baumann W., Leineweber A., Mittemeijer E.J. The Kinetics of a Polytypic Laves Phase Transformation in TiCr2 // Intermetallics. 2011. V. 19. № 4. P. 526–535.https://doi.org/10.1016/j.intermet.2010.11.027
  25. Baheti V.A., Roy S., Ravi R., Paul A. Interdiffusion and the Phase Boundary Compositions in the Co–Ta System // Intermetallics. 2013. V. 33. P. 87–91.https://doi.org/10.1016/j.intermet.2012.09.020
  26. Denkinger M., Mehrer H. Diffusion in the C15-Type Intermetallic Laves Phase NbCo2 // Philos. Mag. A. 2000. V. 80. № 5. P. 1245–1263.https://doi.org/10.1080/01418610008212113
  27. Wein M., Levin L., Nadiv S. The Mechanism of Mixing and Reactive Diffusion in Intermetallics (TiFe2, TiCr2) // Philos. Mag. A. 1978. V. 38. № 1. P. 81–96.https://doi.org/10.1080/01418617808239219
  28. Baba M., Ono Y., Suzuki R.O. Tantalum and Niobium Powder Preparation from Their Oxides by Calciothermic Reduction in the Molten CaCl2 // J. Phys. Chem. Solids. 2005. V. 66. № 2–4. P. 466–470. https://doi.org/10.1016/j.jpcs.2004.06.042
  29. Suzuki R.O., Ikezawa M., Okabe T.H., Oishi T., Ono K. Preparation of TiAl and Ti3Al Powders by Calciothermic Reduction of Oxides // Mater. Trans., JIM. 1990. V. 31. № 1. P. 61–68.https://doi.org/10.2320/matertrans1989.31.61
  30. Suzuki R.O., Tatemoto K., Kitagawa H. Direct Synthesis of the Hydrogen Storage V–Ti Alloy Powder from the Oxides by Calcium Co-Reduction // J. Alloys Compd. 2004. V. 385. № 1–2. P. 173–180. https://doi.org/10.1016/j.jallcom.2004.04.137
  31. Okabe T.H., Fujiwara K., Oishi T., Ono K. A Fundamental Study on the Preparation of Niobium Aluminide Powders by Calciothermic Reduction // Metall. Trans. B. 1992. V. 23. № 4. P. 415–421https://doi.org/10.1007/BF02649659
  32. Wu K.H., Wang Y., Chou K.-C., Zhang G.H. Low-Temperature Synthesis of Single-Phase Refractory Metal Compound Carbides // Int. J. Refract. Met. Hard Mater. 2021. V. 98. P. 105567.https://doi.org/10.1016/j.ijrmhm.2021.105567
  33. Venkatraman M., Neumann J.P. The Ca-Cr (Calcium-Chromium) System // Bull. Alloy Phase Diagrams. 1985. V. 6. № 4. P. 335. https://doi.org/10.1007/BF02880513

补充文件

附件文件
动作
1. JATS XML
2.

下载 (334KB)
3.

下载 (87KB)
4.

下载 (50KB)
5.

下载 (2MB)
6.

下载 (128KB)
7.

下载 (42KB)
8.

下载 (62KB)
9.

下载 (119KB)
10.

下载 (2MB)
11.

下载 (1MB)

版权所有 © А.М. Гурьянов, С.Н. Юдин, А.В. Касимцев, С.С. Володько, И.А. Алимов, Е.В. Евстратов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».