Structural Characteristics and Photoelectric Properties of Iodine-Doped PbS Films Produced by Chemical Deposition
- Authors: Maskaeva L.N.1,2, Markov V.F.1,2, Voronin V.I.3, Pozdin A.V.1, Borisova E.S.1, Anokhina I.A.4
-
Affiliations:
- Yeltsin Federal University, 620002, Yekaterinburg, Russia
- Ural Institute of State Fire Service, Russian Federation Ministry of Emergency Management, 620062, Yekaterinburg, Russia
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
- Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia
- Issue: Vol 59, No 4 (2023)
- Pages: 363-373
- Section: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/140141
- DOI: https://doi.org/10.31857/S0002337X23040061
- EDN: https://elibrary.ru/VTOPPB
- ID: 140141
Cite item
Abstract
Ammonium iodide (NH4I) has been shown to have an inhibiting effect on the growth kinetics of lead sulfide films at initial NH4I concentrations in solution from 0.05 M to 0.40 M. The addition of the inhibitor leads to a decrease in grain size, an increase in the fraction of nanoparticles in the PbS films to ~13%, and an increase in the iodine content of the films to 3.7 at %, depending on growth conditions. X-ray diffraction characterization has shown that the films have a B1 cubic structure (sp. gr.
). Increasing the inhibitor concentration in solution leads to an increase in the lattice parameter of the lead sulfide from 0.59315(1) to 0.59442(3) nm, due to iodine substitution for sulfur in the PbS crystal lattice. The spectral sensitivity peak and the long-wavelength edge of the photoresponse of the PbS films shift to shorter wavelengths from 2.5 to 2.2 and from 3.0 to 2.8 μm, respectively, which is attributable to the formation of the wide-band-gap phase PbI2. Using low-temperature measurements, the thermal band gap of the films grown in the presence of 0.15 and 0.25 mol/L NH4I has been determined to be 0.46 and 0.51 eV. The respective activation energies for acceptor impurity levels are 0.135 and 0.153 eV. The iodine-doped PbS films offer a relatively high voltage responsivity in the IR spectral region owing to an n- to p-type conversion, in combination with an anomalously short response time.
About the authors
L. N. Maskaeva
Yeltsin Federal University, 620002, Yekaterinburg, Russia; Ural Institute of State Fire Service, Russian Federation Ministry of Emergency Management, 620062, Yekaterinburg, Russia
Email: larisamaskaeva@yandex.ru
Россия, 620002, Екатеринбург,
ул. Мира, 19; Россия, 620062, Екатеринбург, ул. Мира, 28
V. F. Markov
Yeltsin Federal University, 620002, Yekaterinburg, Russia; Ural Institute of State Fire Service, Russian Federation Ministry of Emergency Management, 620062, Yekaterinburg, Russia
Email: larisamaskaeva@yandex.ru
Россия, 620002, Екатеринбург,
ул. Мира, 19; Россия, 620062, Екатеринбург, ул. Мира, 28
V. I. Voronin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Yekaterinburg, Russia
Email: larisamaskaeva@yandex.ru
Россия, 620108, Екатеринбург, ул. Софьи Ковалевской, 18
A. V. Pozdin
Yeltsin Federal University, 620002, Yekaterinburg, Russia
Email: larisamaskaeva@yandex.ru
Россия, 620002, Екатеринбург,
ул. Мира, 19
E. S. Borisova
Yeltsin Federal University, 620002, Yekaterinburg, Russia
Email: larisamaskaeva@yandex.ru
Россия, 620002, Екатеринбург,
ул. Мира, 19
I. A. Anokhina
Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990, Yekaterinburg, Russia
Author for correspondence.
Email: larisamaskaeva@yandex.ru
Россия, 620990, Екатеринбург,
ул. Академическая, 20
References
- Khanzode P.M., Halge D.I., Narwade V.N., Dadge J.W., Bogle K.A. Highly Photoresponsive Visible Light Photodetector Using Nano PbS Thin Film on Paper // Optik. 2021. V. 226. P. 165933. https://doi.org/10.1016/j.ijleo.2020.165933
- Pentia E., Draghici V., Sarau G. Structural, Electrical, and Photoelectrical Properties of CdxPb1−xS Thin Films Prepared by Chemical Bath Deposition // J. Electrochem. Soc. 2004. V. 151. P. G729. https://doi.org/10.1149/1.1800673
- Ounissi A., Ouddai N., Achour S. Optical Characterisation of Chemically Deposited Pb(1−x)CdxS Films and a Pb1−xCdxS(n)/Si(p) Heterojunction // Eur. Phys. J. Appl. Phys. 2007. V. 37. P. 241–245. https://doi.org/10.1051/epjap:2007034
- Rakovics V. Chemical Bath Deposition of Nanocrystaline CdS and CdPbS Layers and Investigation of Their Photoconductivity // Mater. Res. Soc. Symp. Proc. 2005. V. 900. P. 87. https://doi.org/10.1557/PROC-0900-O03-30
- Nichols P.L., Liu Z., Yin L., Turkdogan S., Fan F., Ning C.Z. CdxPb1−xS Alloy Nanowires and Heterostructures with Simultaneous Emission in Mid-Infrared and Visible Wavelengths // Nano Lett. 2015. V. 15. P. 909–916. https://doi.org/10.1021/nl503640x
- Hernadez-Borja J., Vorobiev Y.V., Ramirez-Bon R. Thin Film Solar Cells of CdS/PbS Chemically Deposited by an Ammonia-Free Process // Sol. Energy Mater. Sol. Cells. 2011. V. 95. P. 1882–1888. https://doi.org/10.1016/j.solmat.2011.02.012
- Jähnig F., Bozyigit D., Yarema O., Wood V. Research Update: Comparison of Salt and Molecular-Based Iodine Treatments of PbS Nanocrystal Solids for Solar Cells // APL Mater. 2015. V. 3. P. 020701. https://doi.org/10.1063/1.4907158
- Марков В.Ф., Маскаева Л.Н. Полупроводниковый чувствительный элемент газоанализатора оксидов азота на основе сульфида свинца // Аналит. химия. 2001. Т. 56. С. 846.
- Зарубин И.В., Марков В.Ф., Маскаева Л.Н., Зарубина Н.В., Кузнецов М.В. Химический сенсор на основе гидрохимически осажденной пленки PbS для определения свинца в водных растворах // Журн. аналит. химии. 2017. Т. 72. С. 266–272. https://doi.org/10.7868/S0044450217030197
- Sukhovatkin V., Musikhin S., Gorelikov I., Cauchi S., Bakueva L., Kumacheva E., Sargent E.H. Room-Temperature Amplified Spontaneous Emission at 1300 nm in Solution-Processed PbS Quantum-Dot Films // Opt. Lett. 2005. V. 30. P. 171–173. https://doi.org/10.1364/OL.30.000171
- Zheng X., Lei H., Yang G., Ke W., Chen Z., Chen C., Ma J., Guo Q., Yao F., Zhang Q., Xu H., Fang G. Enhancing Efficiency and Stability of Perovskite Solar Cells via a High Mobility p-Type PbS Buffer Layer // Nano Energy. 2017. V. 38. P. 1–11. https://doi.org/10.1016/j.nanoen.2017.05.040
- Xie L., Zhang T., Zhao Y. Stabilizing the MAPbI3 Perovksite via the in-situ Formed Lead Sulfide Layer for Efficient and Robust Solar Cells // J. Energy Chem. 2020. V. 47. P. 62–65. https://doi.org/10.1016/j.jechem.2019.11.023
- Sim K., Jun T., Bang J., Kamioka H., Kim J., Hiramatsu H., Hosono H. Performance Boosting Strategy for Perovskite Light-Emitting Diodes // Appl. Phys. Rev. 2019. V. 6. P. 031402. https://doi.org/10.1063/1.5098871
- Xu Z., Liu Z., Huang Y., Zheng G., Chen Q., Zhou H. To Probe the Performance of Perovskite Memory Devices: Defects Property and Hysteresis // J. Mater. Chem. C. 2017. V. 5. P. 5810–5817. https://doi.org/10.1039/C7TC00266A
- Dong Y., Zou Y., Song J., Song X., Zeng H. Recent Progress of Metal Halide Perovskite Photodetectors // J. Mater. Chem. C. 2017. V. 5. P. 11369–11394. https://doi.org/10.1039/C7TC03612D
- Chen J., Zhou S., Jin S., Li H., Zhai T. Crystal Organometal Halide Perovskites with Promising Optoelectronic Applications // J. Mater. Chem. C. 2016. V. 4. P. 11–27. https://doi.org/10.1039/C5TC03417E
- Blount G.H., Schreiber P.J., Smith D.K., Yamada R.T. Variation of the Properties of Chemically Deposited Lead Sulfide Film with the Use of an Oxidant // J. Appl. Phys. 1973. V. 44. P. 978. https://doi.org/10.1063/1.1662381
- Espevik S., Wu C., Bube R.H. Mechanism of Photoconductivity in Chemically Deposited Lead Sulfide Layers // J. Appl. Phys. 1971. V. 42. P. 3513. https://doi.org/10.1063/1.1660763
- Schwarzenbach V.G., Flaschka H. Die Komplexometrische Titration. Berlin: F. Enke, 1965. P. 339.
- Douketis C., Wang Z., Haslett T.L., Moskovits M. Fractal Character of Cold-Deposited Silver Films Determined by Low-Temperature Scanning Tunneling Microscopy // Phys. Rev. B. 1995. V. 51. P. 11022. https://doi.org/10.1103/PhysRevB.51.11022
- Kul M. Characterization of PbS Film Produced by Chemical Bath Deposition at Room Temperature // Eskişehir Technical University // J. Sci. Technol. B. 2019. V. 7. P. 46–58. https://doi.org/10.20290/aubtdb.465445
- Ashkhotov O.G., Ashkhotova I.B. Kinetics of Electron-Stimulated Oxygen Adsorption on the Lead Surface // Phys. Solid State. 2012. V. 54. P. 1687–1687. https://doi.org/10.1134/S1063783412080045
- Hangyo M., Nakashima S., Hamada Y., Nishio T., Ohno Y. Raman Scattering From the Misfit-Layer Compounds SnNbS3, PbNbS3, and PbTiS3 // Phys. Rev. B. 1993. V. 48. P. 11291. https://doi.org/10.1103/PhysRevB.48.11291
- Perez R.G., Tellez G.H., Rosas U.P., Torres A.M., Tecorralco J.H., Lima L.C., Moreno O.P. Growth of PbS Nanocrystals Thin Films by Chemical Bath // J. Mater. Sci. Eng. A. 2013. V. 3. P. 1.
- Sherwin R., Clark R.J.H., Lauck R., Cardona M. Effect of Isotope Substitution and Doping on the Raman Spectrum of Galena (PbS) // Solid State Commun. 2005. V. 134. P. 565–570. https://doi.org/10.1016/j.ssc.2005.02.026
- Torriani I.S., Tomyiama M., Bilac S., Rego G.B., Cisneros J.I., Ardὔekko Z.P. The Influence of H2O2 on the Crystalline Orientation of Chemically Deposited PbS Thin Films // Thin Solid Films. 1981. P. 77. P. 347–350. https://doi.org/10.1016/0040-6090(81)90328-X
- Naşcu C., Vomir V., Pop I., Ionescu V., Grecu R. The Study of Lead Sulphide Films. VI. Influence of Oxidants on the Chemically Deposited PbS Thin Films // Mater. Sci. Eng. B. 1996. V. 41. P. 235–240. https://doi.org/10.1016/S0921-5107(96)01611-X
- Gudaev O.A., Malinovsky V.K., Paul E.E., Treshikhin V.A. The Percolation Conductivity and Characteristic Scale of Potential Inhomogeneity in Polycrystalline Films // Solid State Commun. 1989. V. 72. P. 791–794. https://doi.org/10.1016/0038-1098(89)90910-1
- Larramendi E.M., Calzadilla O., Gonzalez-Arias A., Hernandez E., Ruiz-Garcia J. Effect of Surface Structure on Photosensitivity in Chemically Deposited PbS Thin Films // Thin Solid Films. 2001. V. 389. P. 301–306. https://doi.org/10.1016/S0040-6090(01)00815-X
- Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. С. 218.
- Rietveld H.M. FULLPROF: a Program for Rietveld Refinement and Pattern Matching Analysis // J. Appl. Crystallogr. 1969. V. 2. P. 65e71. https://doi.org/10.1107/S0021889869006558
- Bush D.L., Post J.E. A Survey of Using Programs for the Rietveld Profile Refinement // Rev. Mineral. 1990. V. 20. P. 369. https://doi.org/10.1180/claymin.1990.025.4.12
- Rodriges-Carvajal J. The Complete Program and Documentation can be Obtained // Phys. B. 1993. V. 192. P. 55. https://doi.org/10.1016/0921-4526(93)90108-I
- Williamson G.K., Hall W.H. X-ray Line Broadening from Filed Aluminium and Wolfram // Acta. Metall. 1953. V. 1. P. 22–31. https://doi.org/10.1016/0001-6160(53)90006-6
- Мухамедьяров Р.Д., Стук В.И., Блинов О.Ю. Установка для измерения пороговых параметров фотоприемников // ПТЭ. 1976. Т. 19. С. 234.
- Martell A.E., Hancock R.D. Metall Complexes in Aqueous Solutions. N.Y.; London: Plenum Press, 1996. P. 253.
- Scanlon W.W. Recent Advances in the Optical and Electronic Properties of PbS, PbSe, PbTe and Their Alloys // J. Phys. Chem. Solid. 1959. V. 8. P. 423–428. https://doi.org/10.1016/0022-3697(59)90379-8
- Zemmel J.N., Jensen J.D., Schoolar R.B. Electrical and Optical Properties of Epitaxial Films of PbS, PbSe, PbTe, and SnTe // Phys. Rev. A. 1965. V. 140. P. 330. https://doi.org/10.1103/PhysRev.140.A330
- Амасев Д.В., Михалевич В.Г., Тамеев А.Р., Саитов Ш.Р., Казанский А.Г. Формирование двухфазной структуры в металлоорганическом перовските CH3NH3PbI3 // ФТП. 2020. Т. 54. С. 543–546. https://doi.org/10.21883/FTP.2020.06.49382.935
- Radhakrishnamn S., Kamalasanacn M.N., Mehendru P.C. Sensitization of Photoconductivity in Tetragonal Lead Monoxide // J. Mater. Sci. 1983. V. 18. P. 1912–1916. https://doi.org/10.1007/BF00554982
- Keezer R.C., Bowman D.L., Becker J.H. Electrical and Optical Properties of Lead Oxide Single Crystals // J. Appl. Phys. 1968. V. 39. P. 2062. https://doi.org/10.1063/1.1656489
- Maskaeva L.N., Vaganova I.V., Markov V.F., Voronin V.I., Belov V.S., Lipina O.A., Mostovshchikova E.V., Miroshnikova I.N. A Nonlinear Evolution of the Structure, Morphology, and Optical Properties of PbS–CdS Films with Cadmium Nitrate in the Reaction Mixture // Phys. Chem. Chem. Phys. 2021. V. 23. P. 10600–10614. https://doi.org/10.1039/D1CP00775K
- Maskaeva L.N., Yurk V.M., Markov V.F., Kuznetsov M.V., Voronin V.I., Muhamediarov R.D., Zyrianov G.V. Composition, Structure and Functional Properties of Nanostructured PbSe Films Deposited Using Different Antioxidants // Mater. Sci. Semicond. Process. 2020. V. 108. P. 104867. https://doi.org/10.1016/j.mssp.2019.104867
- Butkevich V.G., Bochkov V.D., Globus E.R. Photodetectors and Photodetectors Based on Polycrystalline and Epitaxial Chalcogenides of Lead Layers. // Appl. Phys. 2001. V. 6. P. 66–112.
- Кайданов В.И., Немов С.А., Равич Ю.И., Дереза А.Ю. Особенности самокомпенсации донорного действия галогенов в теллуриде свинца // ФТП. 1985. Т. 19. С. 1857–1860.
- Житинская М.К., Немов С.А., Прошин В.И. Глубокая самокомпенсация в системе PbSe(Cl, Seизб) // ФТП. 1990. Т. 24. С. 1116–1118.
- Немов С.А., Житинская М.К., Прошин В.И. Особенности механизма самокомпенсации легирующего действия примеси хлора в PbSe // ФТП. 1991. Т. 25. С. 114–117.
- Неустроев Л.Н., Осипов В.В. О природе аномальных свойств фоточувствительных поликристаллических пленок типа PbS // ФТП. 1987. Т. 21. С. 2159–2163.
Supplementary files
