Стереолитографическое формирование алюмооксидной керамики из полимеризуемых прекурсоров, содержащих хлориды алюминия

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Предложен подход к созданию полимеризуемых прекурсоров корундовой и оксинитридной керамики и их использованию в стереолитографическом формировании алюмосодержащей керамики. Исходя из однородности (оптической прозрачности) и легкости фотополимеризации, процента потери массы при термолизе отобраны три прекурсора на основе хлоридов алюминия (безводного и гексагидрата), а также основного хлорида алюминия. Охарактеризовано поведение прекурсоров при обжиге в атмосфере аммиака для синтеза оксинитридной керамики и при обжиге на воздухе для изготовления корундовой керамики из гомогенных прекурсоров. Апробирована стереолитографическая 3D-печать корундовой керамики, в т. ч. с использованием разработанных прекурсоров в виде фотополимеризуемых связок, позволяющих повысить долю оксида алюминия в фотосуспензии.

作者简介

Д. Ларионов

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73

П. Евдокимов

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах; Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73; Россия, 119991, Москва, Ленинские горы, 1, с. 3

А. Гаршев

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах; Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73; Россия, 119991, Москва, Ленинские горы, 1, с. 3

Д. Козлов

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73

В. Путляев

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах; Московский государственный университет им. М.В. Ломоносова,
Химический факультет

编辑信件的主要联系方式.
Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73; Россия, 119991, Москва, Ленинские горы, 1, с. 3

参考

  1. Zocca A., Colombo P., Gomes C.M., Günster J. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities // J. Am. Ceram. Soc. 2015. V. 98. № 7. P. 1983–2001. https://doi.org/10.1111/jace.13700
  2. Ievlev V.M., Putlyaev V.I., Safronova T.V., Evdokimov P.V. Additive Technologies for Making Highly Permeable Inorganic Materials with Tailored Morphological Architectonics for Medicine // Inorg. Mater. 2015. V. 51. № 13. P. 1295–1313. https://doi.org/10.1134/S0020168515130038
  3. Colombo P., Mera G., Riedel R., Sorarù G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics // J. Am. Ceram. Soc. 2010. V. 93. № 7. P. 1805–1837. https://doi.org/10.1111/j.1551-2916.2010.03876.x
  4. Liew L.A., Liu Y., Luo R., Cross T., An L., Bright V.M., Dunn M.L., Daily J.W., Raj R. Fabrication of SiCN MEMS by Photopolymerization of Preceramic Polymer // Sens. Actuators, A. 2002. V. 95. № 2–3. P. 120–134. https://doi.org/10.1109/MEMSYS.2002.984340
  5. Heimann R.B. Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application // Ceramics. 2021. V. 4. P. 208–223. https://doi.org/10.3390/ceramics4020016
  6. Rey C., Combes C., Drouet C. Bioinert Ceramics: State-of-the-Art // Key Eng. Mater. 2017. V. 758. P. 3–13. doi: 10.4028/ href='www.scientific.net/KEM.758.3' target='_blank'>www.scientific.net/KEM.758.3
  7. Eckel Z.C., Zhou C., Martin J.H., Jacobsen A.J., Carter W.B., Schaedler T.A. Additive Manufacturing Of Polymer-Derived Ceramics // Science. 2016. V. 351. № 6268. P. 58–62. https://doi.org/10.1126/science.aad2688
  8. De Hazan Y., Penner D. SiC and SiOC Ceramic Articles Produced by Stereolithography of Acrylate Modified Polycarbosilane Systems // J. Eur. Ceram. Soc. 2017. V. 37. № 16. P. 5205–5212. https://doi.org/10.1016/j.jeurceramsoc.2017.03.021
  9. Новаков И.А., Радченко Ф.С. Наноразмерные алюмоксановые частицы-прекурсоры органо-неорганических гибридных полимерных композиций // Изв. ВолгГТУ. 2013. № 4 (107). С. 5–20.
  10. Стороженко П.А., Щербакова Г.И., Цирлин А.М., Муркина А.С., Варфоломеев М.С., Кузнецова М.Г., Полякова М.В., Трохаченкова О.П. Органоалкоксиалюмосиликаты и бескремнеземное связующее на их основе // Неорган. материалы. 2007. Т. 43. № 3. С. 373–382. https://doi.org/10.1134/S0002337X19100130
  11. He J., Avnir D., Zhang L. Sol–Gel Derived Alumina Glass: Mechanistic Study of Its Structural Evolution // Acta Mater. 2019. V. 174 P. 418–426. https://doi.org/10.1016/j.actamat.2019.05.062
  12. Baixia L., Yinkui L., Yi. L. Preparation of Aluminium Nitride from Organometallic/Polymeric Precursors // J. Mater. Chem. 1993. V. 3. № 2. P. 117–127. https://doi.org/10.1039/JM9930300117
  13. Jensen J.A. Organoaluminum Precursor Polymers for Aluminum Nitride Ceramics // Inorganic and Organometallic Polymers II. ACS Symposium Series, Ch. 32. Washington, DC: Am. Chem. Soc., 1994. P. 428–439. https://doi.org/10.1021/bk-1994-0572.ch032
  14. Naderi-beni B., Alizadeh A. Preparation of Single Phase AlON Powders Aided by the Nitridation of Sol-Gel-Derived Nanoparticles // Ceram. Int. 2019. V. 45. P. 7537–7543. https://doi.org/10.1016/j.ceramint.2019.01.047
  15. Ивичева С.Н., Овсянников Н.А., Лысенков А.С., Климашин А.А., Каргин Ю.Ф. Синтез оксонитридоалюмосиликатов золь-гель методом // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1614–1625. https://doi.org/10.1134/S0036023620120050
  16. Орлов Н.К., Евдокимов П.В., Милькин П.А., Тихонов А.А., Тихонова С.А., Климашина Е.С., Зуев Д.М., Капитанова О.О., Путляев В.И. Синтез прекерамического прекурсора на основе органических солей алюминия для стереолитографической 3D-печати корундовой керамики // Перспективные материалы. 2021. № 4. С. 67–80. https://doi.org/10.30791/1028-978X-2021-4-67-80
  17. Chase M.W. NIST–JANAF Thermochemical Tables, Fourth Edition // J. Phys. Chem. Ref. Data. Monograph 9. 1998. P. 1–1951.
  18. Willems H.X., Hendrix M.M.R.M., Metselaar R., de With G. Thermodynamics of Alon I: Stability at Lower Temperatures // J. Eur. Ceram. Soc. 1992. V. 10. P. 327–337. https://doi.org/10.1016/0955-2219(92)90088-U
  19. Corbin N.D. Aluminum Oxynitride Spinel: a Review // J. Eur. Ceram. Soc. 1989. V. 5. P. 143–154. https://doi.org/10.1016/0955-2219(89)90030-7
  20. Kaufman L. Calculation of Quasibinary and Quasiternary Oxynitride Systems – III // Calphad. 1979. V. 3. P. 275–291.
  21. Валеев Д.В., Лайнер Ю.А., Самохин А.В., Синайский М.А., Михайлова А.Б., Куцев С.В., Гольдберг М.А. Физико-химические исследования процесса термогидролиза хлорида алюминия // Перспективные материалы. 2016. № 1. С. 64–73. https://doi.org/10.1134/S2075113316050269
  22. Tabary P., Servant C. Thermodynamic Reassessment of the AlN-A12O3 System // Calphad. 1999. V. 22. № 2. P. 179–201. https://doi.org/10.1016/S0364-5916(98)00023-6
  23. Becher P. Microstructural Design of Toughened Ceramics // J. Am. Ceram. Soc. 1991. V. 74. № 2. P. 255–269. https://doi.org/10.1111/j.1151-2916.1991.tb06872.x

补充文件

附件文件
动作
1. JATS XML
2.

下载 (92KB)
3.

下载 (147KB)
4.

下载 (168KB)
5.

下载 (3MB)
6.

下载 (52KB)
7.

下载 (2MB)

版权所有 © Д.С. Ларионов, П.В. Евдокимов, А.В. Гаршев, Д.А. Козлов, В.И. Путляев, 2023

##common.cookie##