Стереолитографическое формирование алюмооксидной керамики из полимеризуемых прекурсоров, содержащих хлориды алюминия

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Предложен подход к созданию полимеризуемых прекурсоров корундовой и оксинитридной керамики и их использованию в стереолитографическом формировании алюмосодержащей керамики. Исходя из однородности (оптической прозрачности) и легкости фотополимеризации, процента потери массы при термолизе отобраны три прекурсора на основе хлоридов алюминия (безводного и гексагидрата), а также основного хлорида алюминия. Охарактеризовано поведение прекурсоров при обжиге в атмосфере аммиака для синтеза оксинитридной керамики и при обжиге на воздухе для изготовления корундовой керамики из гомогенных прекурсоров. Апробирована стереолитографическая 3D-печать корундовой керамики, в т. ч. с использованием разработанных прекурсоров в виде фотополимеризуемых связок, позволяющих повысить долю оксида алюминия в фотосуспензии.

Sobre autores

Д. Ларионов

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73

П. Евдокимов

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах; Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73; Россия, 119991, Москва, Ленинские горы, 1, с. 3

А. Гаршев

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах; Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73; Россия, 119991, Москва, Ленинские горы, 1, с. 3

Д. Козлов

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах

Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73

В. Путляев

Московский государственный университет им. М.В. Ломоносова,
Факультет наук о материалах; Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Autor responsável pela correspondência
Email: valery.putlayev@gmail.com
Россия, 119991, Москва, Ленинские горы, 1, с. 73; Россия, 119991, Москва, Ленинские горы, 1, с. 3

Bibliografia

  1. Zocca A., Colombo P., Gomes C.M., Günster J. Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities // J. Am. Ceram. Soc. 2015. V. 98. № 7. P. 1983–2001. https://doi.org/10.1111/jace.13700
  2. Ievlev V.M., Putlyaev V.I., Safronova T.V., Evdokimov P.V. Additive Technologies for Making Highly Permeable Inorganic Materials with Tailored Morphological Architectonics for Medicine // Inorg. Mater. 2015. V. 51. № 13. P. 1295–1313. https://doi.org/10.1134/S0020168515130038
  3. Colombo P., Mera G., Riedel R., Sorarù G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics // J. Am. Ceram. Soc. 2010. V. 93. № 7. P. 1805–1837. https://doi.org/10.1111/j.1551-2916.2010.03876.x
  4. Liew L.A., Liu Y., Luo R., Cross T., An L., Bright V.M., Dunn M.L., Daily J.W., Raj R. Fabrication of SiCN MEMS by Photopolymerization of Preceramic Polymer // Sens. Actuators, A. 2002. V. 95. № 2–3. P. 120–134. https://doi.org/10.1109/MEMSYS.2002.984340
  5. Heimann R.B. Silicon Nitride, a Close to Ideal Ceramic Material for Medical Application // Ceramics. 2021. V. 4. P. 208–223. https://doi.org/10.3390/ceramics4020016
  6. Rey C., Combes C., Drouet C. Bioinert Ceramics: State-of-the-Art // Key Eng. Mater. 2017. V. 758. P. 3–13. doi: 10.4028/ href='www.scientific.net/KEM.758.3' target='_blank'>www.scientific.net/KEM.758.3
  7. Eckel Z.C., Zhou C., Martin J.H., Jacobsen A.J., Carter W.B., Schaedler T.A. Additive Manufacturing Of Polymer-Derived Ceramics // Science. 2016. V. 351. № 6268. P. 58–62. https://doi.org/10.1126/science.aad2688
  8. De Hazan Y., Penner D. SiC and SiOC Ceramic Articles Produced by Stereolithography of Acrylate Modified Polycarbosilane Systems // J. Eur. Ceram. Soc. 2017. V. 37. № 16. P. 5205–5212. https://doi.org/10.1016/j.jeurceramsoc.2017.03.021
  9. Новаков И.А., Радченко Ф.С. Наноразмерные алюмоксановые частицы-прекурсоры органо-неорганических гибридных полимерных композиций // Изв. ВолгГТУ. 2013. № 4 (107). С. 5–20.
  10. Стороженко П.А., Щербакова Г.И., Цирлин А.М., Муркина А.С., Варфоломеев М.С., Кузнецова М.Г., Полякова М.В., Трохаченкова О.П. Органоалкоксиалюмосиликаты и бескремнеземное связующее на их основе // Неорган. материалы. 2007. Т. 43. № 3. С. 373–382. https://doi.org/10.1134/S0002337X19100130
  11. He J., Avnir D., Zhang L. Sol–Gel Derived Alumina Glass: Mechanistic Study of Its Structural Evolution // Acta Mater. 2019. V. 174 P. 418–426. https://doi.org/10.1016/j.actamat.2019.05.062
  12. Baixia L., Yinkui L., Yi. L. Preparation of Aluminium Nitride from Organometallic/Polymeric Precursors // J. Mater. Chem. 1993. V. 3. № 2. P. 117–127. https://doi.org/10.1039/JM9930300117
  13. Jensen J.A. Organoaluminum Precursor Polymers for Aluminum Nitride Ceramics // Inorganic and Organometallic Polymers II. ACS Symposium Series, Ch. 32. Washington, DC: Am. Chem. Soc., 1994. P. 428–439. https://doi.org/10.1021/bk-1994-0572.ch032
  14. Naderi-beni B., Alizadeh A. Preparation of Single Phase AlON Powders Aided by the Nitridation of Sol-Gel-Derived Nanoparticles // Ceram. Int. 2019. V. 45. P. 7537–7543. https://doi.org/10.1016/j.ceramint.2019.01.047
  15. Ивичева С.Н., Овсянников Н.А., Лысенков А.С., Климашин А.А., Каргин Ю.Ф. Синтез оксонитридоалюмосиликатов золь-гель методом // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1614–1625. https://doi.org/10.1134/S0036023620120050
  16. Орлов Н.К., Евдокимов П.В., Милькин П.А., Тихонов А.А., Тихонова С.А., Климашина Е.С., Зуев Д.М., Капитанова О.О., Путляев В.И. Синтез прекерамического прекурсора на основе органических солей алюминия для стереолитографической 3D-печати корундовой керамики // Перспективные материалы. 2021. № 4. С. 67–80. https://doi.org/10.30791/1028-978X-2021-4-67-80
  17. Chase M.W. NIST–JANAF Thermochemical Tables, Fourth Edition // J. Phys. Chem. Ref. Data. Monograph 9. 1998. P. 1–1951.
  18. Willems H.X., Hendrix M.M.R.M., Metselaar R., de With G. Thermodynamics of Alon I: Stability at Lower Temperatures // J. Eur. Ceram. Soc. 1992. V. 10. P. 327–337. https://doi.org/10.1016/0955-2219(92)90088-U
  19. Corbin N.D. Aluminum Oxynitride Spinel: a Review // J. Eur. Ceram. Soc. 1989. V. 5. P. 143–154. https://doi.org/10.1016/0955-2219(89)90030-7
  20. Kaufman L. Calculation of Quasibinary and Quasiternary Oxynitride Systems – III // Calphad. 1979. V. 3. P. 275–291.
  21. Валеев Д.В., Лайнер Ю.А., Самохин А.В., Синайский М.А., Михайлова А.Б., Куцев С.В., Гольдберг М.А. Физико-химические исследования процесса термогидролиза хлорида алюминия // Перспективные материалы. 2016. № 1. С. 64–73. https://doi.org/10.1134/S2075113316050269
  22. Tabary P., Servant C. Thermodynamic Reassessment of the AlN-A12O3 System // Calphad. 1999. V. 22. № 2. P. 179–201. https://doi.org/10.1016/S0364-5916(98)00023-6
  23. Becher P. Microstructural Design of Toughened Ceramics // J. Am. Ceram. Soc. 1991. V. 74. № 2. P. 255–269. https://doi.org/10.1111/j.1151-2916.1991.tb06872.x

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (92KB)
3.

Baixar (147KB)
4.

Baixar (168KB)
5.

Baixar (3MB)
6.

Baixar (52KB)
7.

Baixar (2MB)

Declaração de direitos autorais © Д.С. Ларионов, П.В. Евдокимов, А.В. Гаршев, Д.А. Козлов, В.И. Путляев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies