Impact of Water Saturation of the Medium on the Productivity of Natural-Anthropogenic Seismicity: A Case Study of the Khibiny Massif
- 作者: Motorin A.Y.1,2, Zhukova S.A.1,3, Baranov S.V.1, Shebalin P.N.4
-
隶属关系:
- Kola Branch, Geophysical Survey, Russian Academy of Sciences
- Kirovsk Branch, AO Apatit
- Mining Institute, Kola Science Center, Russian Academy of Sciences
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- 期: 编号 2 (2024)
- 页面: 14-25
- 栏目: Articles
- URL: https://journals.rcsi.science/0002-3337/article/view/255535
- DOI: https://doi.org/10.31857/S0002333724020025
- EDN: https://elibrary.ru/BTTHSN
- ID: 255535
如何引用文章
详细
The effect of water saturation of the medium on the ability of earthquakes to initiate repeated shocks (productivity) is considered based on the long-term seismological observations and water inflow monitoring data from the Khibiny massif ore deposits. The study indicates that the water saturation of the medium is a factor that has a significant impact on the productivity of earthquakes.
全文:

作者简介
A. Motorin
Kola Branch, Geophysical Survey, Russian Academy of Sciences; Kirovsk Branch, AO Apatit
编辑信件的主要联系方式.
Email: ayumotorin@gmail.com
俄罗斯联邦, Apatity; Kirovsk
S. Zhukova
Kola Branch, Geophysical Survey, Russian Academy of Sciences; Mining Institute, Kola Science Center, Russian Academy of Sciences
Email: svetlana.zhukowa@yandex.ru
俄罗斯联邦, Apatity; Apatity
S. Baranov
Kola Branch, Geophysical Survey, Russian Academy of Sciences
Email: bars.vl@gmail.com
俄罗斯联邦, Apatity
P. Shebalin
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
俄罗斯联邦, Moscow
参考
- Баранов С.В., Жукова С.А., Корчак П.А., Шебалин П.Н. Продуктивность техногенной сейсмичности // Физика Земли. 2020. № 3. С. 40–51. DOI: https://doi.org/10.31857/S0002333720030011
- Жукова С.А., Журавлева О.Г., Онуприенко В.С., Стрешнев А.А. Особенности сейсмического режима массива горных пород при отработке удароопасных месторождений Хибинского массива // Горный информационно-аналитический бюллетень (научно-технический журнал). 2022. № 7. С. 5–17. DOI: https://doi.org/10.25018/0236_1493_2022_7_0_5
- Козырев А.А., Батугин А.С., Жукова С.А. О влиянии обводненности массива на его сейсмическую активность при разработке апатитовых месторождений Хибин // Горный журнал. 2021. C. 31–36. doi: 10.17580/gzh.2021.01.06
- Корчак П.А., Жукова С.А., Меньшиков П.Ю. Становление и развитие системы мониторинга сейсмических процессов в зоне производственной деятельности АО “Апатит” // Горный журнал. 2014. № 10. С. 42–46.
- Маточкина С.Д. Закономерности пространственно-временного группирования событий акустической эмиссии в лабораторных экспериментах по разрушению горных пород. Бакалаврская работа. М.: МГУ им. М.В.Ломоносова, физический факультет, кафедра Физики Земли. 2023. 37 с.
- Онохин Ф.М. Особенности структур Хибинского массива и апатито-нефелиновых месторождений. Л.: Наука. 1975. 105 с.
- Писаренко В.Ф., Родкин М.В. Декластеризация потока сейсмических событий, статистический анализ // Физика Земли. 2019. № 5. С. 38–52. doi: 10.31857/S0002-33372019538-52
- Раутиан Т.Г. Энергия землетрясений. Методы детального изучения сейсмичности. М.: изд-во АН СССР. 1960. С. 75–114. (Тр. ИФЗ АН СССР. № 9(176)).
- Ребецкий Ю.Л., Сим Л.А., Козырев А.А. О возможном механизме генерации избыточного горизонтального сжатия рудных узлов Кольского полуострова (Хибины, Ловозеро, Ковдор) // Геология рудных месторождений. 2017. T. 59. № 4. С. 263–280. doi: 10.7868/S0016777017040049
- Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН. 2020. 412 с.
- Труды Государственного научно-исследовательского института горнохимического сырья, выпуск 10, Хибинские апатитовые месторождения. Вопросы структуры, гидрогеологии и методики разведки / Б.М. Гиммельфарб, Г.М. Вировлянский, А.А. Шугин (ред.). М.: Недра. 1965. 315 с.
- Arzamastsev A.A., Arzamastseva L.V., Zhirova A.M., & Glaznev V.N. Model of formation of the Khibiny-Lovozero ore-bearing volcanic-plutonic complex // Geology of Ore Deposits. 2013. V. 55. P. 341–356. doi: 10.1134/S1075701513050024
- Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Rev. E. 2004. V. 69 (6). P. 066106-1–066106-8. doi: 10.1103/PhysRevE.69.066106
- Baranov S.V., Narteau C., Shebalin P.N. Modeling and Prediction of Aftershock Activity // Surveys in Geophysics. 2022. V. 43. P. 437–48. doi: 10.1007/s10712-022-09698-0
- Baranov S.V., Zhukova S.A., Korchak P.A., Shebalin P.N. Seismic productivity of blasts: A case-study of the khibiny massif // Eurasian Mining 2020. № 2. P. 14–18. doi: 10.17580/em.2020.02.04
- Bayliss K., Naylor M., Main I.G. Probabilistic identification of earthquake clusters using rescaled nearest neighbor distance networks. // Geophysical Journal International. 2019. V. 217 (1). P. 487–503. DOI: https://doi.org/10.1093/gji/ggz034
- Fedotova Iu.V., Kozyrev A.A., Yunga S.L. Mine-induced seismicity in the central part Kola Peninsula in Russia. Contribution of Rock Mechanics to the New Century. Proceedings of the ISRM International Symposium: Third Asian Rock Mechanics Symposium, Kyoto, Japan. November 30 – December 2, 2004. Millpress. Roterdam. Netherlands. V. 1. P. 495–500.
- Gutenberg B., Richter C.F. Frequency of earthquakes in California // Bull. Seismol. Soc. Am. 1944. V. 34. P. 185–188.
- Hainzl S., Ben-Zion Y., Cattania C., Wassermann J. Testing atmospheric and tidal earthquake triggering at Mt. Hochstaufen, Germany // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 5442–5452. doi: 10.1002/jgrb.50387
- Helmstetter A., Sornette D. Subcritical and supercritical regimes in epidemic models of earthquake aftershocks // Journal of Geophysical Research: Solid Earth. 2002. V. 107. ESE–10. doi: 10.1029/2001JB001580
- Kagan Y.Y., Knopoff L. Stochastic synthesis of earthquake catalogs // J. Geophys. Res. 1981. V. 86. P. 2853–2862.
- Kartseva T.I, Smirnov V.B., Patonin A.V., Sergeev D.S., Shikhova N.M., Ponomarev A.V., Stroganova S.M., Mikhailov V.O. Initiation of rock fracture by fluids of different viscosities // Izvestiya Physics of the Solid Earth. 2022. V. 58. № 4. P. 576-90. doi: 10.1134/S106935132204005X
- Kozyrev A.A., Semenova I.E., Zhukova S.A., Zhuravleva O.G. Factors of seismic behavior change and localization of hazardous zones under a large-scale mining-induced impact // Russian Mining Industry. 2022. V. (6). P. 95–102. doi: 10.30686/1609-9192-2022-6-95-102
- Kremenetskaya E.O., Trjapitsin V.M. Induced Seismicity in the Khibiny Massif (Kola Peninsula) // Pure and Applied Geophysics. 1995. V. 145. P. 29–37. doi: 10.1007/BF00879481
- Marsan D., Helmstetter A. How variable is the number of triggered aftershocks? // J.Geophys. Res. Solid Earth. 2017. V. 122. P. 5544–5560. doi: 10.1002/2016JB013807
- Maystrenko Y.P., Brönner M., Olesen O., Saloranta T.M., Slagstad T. Atmospheric precipitation and anomalous upper mantle in relation to intraplate seismicity in Norway // Tectonics. 2020. V. 39. P. e2020TC006070. https://doi.org/10.1029/2020TC006070
- Nivin V.A. Occurrence Forms, Composition, Distribution, Origin and Potential Hazard of Natural Hydrogen-Hydrocarbon Gases in Ore Deposits of the Khibiny and Lovozero Massifs: A Review // Minerals. 2019. V. 9. P. 31. doi: 10.3390/min9090535
- Ogata Y. Statistical models for standard seismicity and detection of anomalies by residual analysis // Tectonophysics. 1989. V. 169. P. 159–174. doi: 10.1016/0040-1951(89)90191-1
- Ogata Y., Zhuang J. Space–time ETAS models and an improved extension // Tectonophysics. 2006. V. 413. Is. 1–2. P. 13–23. doi: 10.1016/j.tecto.2005.10.016
- Pintori F., Serpelloni E., Longuevergne L., Garcia A., Faenza L., D’Alberto L. et al. Mechanical response of shallow crust to groundwater storage variations: Inferences from deformation and seismic observations in the eastern Southern Alps, Italy // Journal of Geophysical Research: Solid Earth. 2021. V. 126. P. e2020JB020586. DOI: https://doi.org/10.1029/2020JB020586
- Shabarov A.N., Kuranov A.D. Kiselev V.A. Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at Khibiny deposits of apatite-nepheline ores // Eurasian Mining. 2021. V. 36(2). P. 3–7. doi: 10.17580/em.2021.02.01
- Shebalin P., Baranov S., Vorobieva I. Earthquake Productivity Law in a Wide Magnitude Range // Frontiers in Earth Science. 2022. V. 10. P. 881425. doi: 10.3389/feart.2022.881425
- Shebalin P.N., Narteau C., Baranov S.V. Earthquake Productivity Law // Geophysical Journal International. 2020 V. 222. P. 1264–1269. DOI: https://doi.org/10.1093/gji/ggaa252.
- Smirnov V., Potanina M., Kartseva, T., Ponomarev A., Patonin A., Mikhailov V., Sergeev D. Seasonal Variations in the b-Value of the Reservoir-Triggered Seismicity in the Koyna–Warna Region, Western India // Izv., Phys. Solid Earth. 2022 V. 58. P. 364–378. doi: 10.1134/S1069351322030077
- Talwani P. On the nature of reservoir-induced seismicity // Pure Appl. Geophys. 1997. V. 150. P. 473–492.
- Vorobieva I., Shebalin P., Narteau C. Condition of occurrence of large man-made earthquakes in the zone of oil production, Oklahoma // Izv., Phys. Solid Earth. 2020 V. 56. P. 911–919. doi: 10.1134/S1069351320060130
- Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: identification and stability // J. Geophys. Res. 2013. V. 118. P. 2847–2864.
- Zaliapin I., Ben-Zion Y. A global classification and characterization of earthquake clusters // Geophys. J. Int. 2016. V. 207. P. 608–634. doi: 10.1093/gji/ggw300
- Zhang L., Liao W., Chen Z., Li J., Yao Y., Tong G., Zhao Y., Zhou Z. Variations in seismic parameters for the earthquakes during loading and unloading periods in the Three Gorges Reservoir area // Sci. Rep. 2022. V. 12, 11211. doi: 10.1038/s41598-022-15362-9
- Zhukova S., Motorin A., Baranov S. Influence of Watering of Khibiny Mountains on the Earthquake-Size Distribution / Kosterov A., Lyskova E., Mironova I., Apatenkov S., Baranov S. (eds.) Problems of Geocosmos–2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. 2023. doi: 10.1007/978-3-031-40728-4_12
- Zoback M.D., Harjes H.-P. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany // J. Geophys. Res. 1997. V. 102. P. 18477–18492. doi: https://doi.org/10.1029/96JB02814
补充文件
