Mathematical Models of Thermal Reaction of Viscoelastic Bodies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper examines mathematical models of the thermal response of viscoelastic bodies under intense heating of the solid boundary (temperature heat ing; thermal heating; heating by the environment). The proposed theory is based on the linear rheological models of Maxwell and Kelvin, introducing stress and strain deviators. A generalized model is considered, incorporating three coordi nate systems simultaneously: Cartesian coordinates – a massive body bounded by a flat surface; spherical coordinates – a massive body with an internal spherical cavity; and cylindrical coordinates – a massive body with an internal cylindrical cavity. Numerical experiments are presented, and the influence of the domain topology on the magnitude of the corresponding thermal stresses is revealed; the properties of Maxwell and Kelvin viscoelastic media are described.

About the authors

E. M. Kartashov

Federal State Budgetary Educational Institution of Higher Education “MIREA – Russian Technological University” (Lomonosov Institute of Fine Chemical Technology), Department of Higher and Applied Mathematics

Email: professor.kartashov@gmail.com
ORCID iD: 0000-0002-7808-4246
Scopus Author ID: 7004134344
ResearcherId: Q-9572-2016
Dr. Sci. (Phys.-Math.), Honored Scientist of the Russian Federation, Honorary Worker of Higher Professional Education of the Russian Federation, Honorary Worker of Science and Technology of the Russian Federation, Honorary Professor of the Lomonosov Moscow State University of Fine Chemical Technology, Laureate of the Golden Medal of the Academy of Sciences of Belarus in Thermophysics Moscow, 119571

E. V. Solomonova

Federal State Budgetary Educational Institution of Higher Education “MIREA – Russian Technological University” (Lomonosov Institute of Fine Chemical Technology), Department of Higher and Applied Mathematics

Email: katrin-vaso@yandex.ru
Lecturer Moscow, 119571

I. R. Tishaeva

Federal State Budgetary Educational Institution of Higher Education “MIREA – Russian Technological University” (Lomonosov Institute of Fine Chemical Technology), Department of Higher and Applied Mathematics

Email: irina.tishaeva@rambler.ru
ORCID iD: 0000-0003-1866-6866
Candidate of Technical Sciences, Associate Professor Moscow, 119571

References

  1. Kartashov E.M., Parton V.Z. Dynamic thermoelasticity and problems of thermal shock. (Review). Results of science and technology, a series of Mechanics of a deformable solid. M. Viniti. 1991. Vol. 22. P. 55-127. (In Russ.)
  2. Kartashov E.M., Kudinov V.A. Analytical theory of thermal conductivity and applied thermoelasticity. Moscow: URSS; 2012. 670 p. ISBN 978-5-397-02750-2
  3. Kartashov E.M., Tishaeva I.R., Solomonova E.V. Generalized model of heat shock of massive bodies with internal cavities. Thermal processes in engineering. 2022. Vol. 14. No. 2. P. 56–66. (In Russ.) https://doi.org/10.34759/tpt-2022-14-2-56-66
  4. Boli B., Weiner J. Theory of temperature stresses: translated from English. Moscow: Mir, 1964. 517 p.
  5. Parkus G. Unsteady temperature stresses. M.: Fizmat Publishing House. 1963. 252 p.
  6. Zarubin V.S., Kuvyrkin G.N. Mathematical models of continuum mechanics and electrodynamics. Moscow: Publishing House of Bauman Moscow State Technical University. 2008. 512 p. ISBN 978-5-7038-3162-5
  7. Savelyeva I.Y. Development and analysis of mathematical models of thermomechanics of structurally sensitive materials. Dissertation for the degree of Doctor of Physico-mathematical Sciences, Moscow: Bauman Moscow State Technical University, 2023. 375 p.
  8. Kudinov I.V., Kudinov V.A. Mathematical model of locally nonequilibrium heat transfer taking into account spatial and temporal nonlocality. Engineering and physics. Journal 2015. Vol. 88. No. 2. P. 393–408. https://www.ioffe.ru/ru/nauka/rezul-taty/publdb/bd-publikacii-fti/periodic/889/ (Accessed 10.06.2025).
  9. Kudinov V.A., Eremin A.V., Kudinov I.V. Development and research of a strongly nonequilibrium model of heat transfer in a liquid, taking into account spatial and temporal nonlocality. Thermophysics and Aeromechanics. 2017. No. 6. P. 929–935. https://www.sibran.ru/journals/issue.php?ID=172226. (Accessed 12.06.2025).
  10. Kirsanov Yu.A., Kirsanov A.Yu. On measuring the time of thermal relaxation of solids. Izv. RAS, Energetika. 2015. No. 1. P. 113–122. https://elibrary.ru/download/elibrary_23112804_96551339.pdf (Accessed 08.01.2025).
  11. Sinkevich O.A. Semenov A.M. Solving the Boltzmann equation by decomposing the distribution function into the Enskog series according to the Knudsen parameter in the case of several scales of dependence of the distribution function on time and coordinates. Journal of Technical Physics. 2003. Vol. 73 No. 10. P. 1–5. https://journals.ioffe.ru/articles/viewPDF/8083. (Accessed 08.10.2025).
  12. Lykov A.V. Thermal conductivity and diffusion. Moscow: Gizlegprom, 1941. 196 p. (In Russ.)
  13. Cattaneo C. Sulla Conduzione de Calore. Atti dei Seminaro Matematiko c Fisico dell. Universita di Modena. 1948. Vol. 3. P. 83–101.
  14. Vernotte P. Les paradoxes de la theorie continue de eguation de lachaleur. Comple Rendus. Acad. Sci. Paris. 1958. Vol. 246. No. 22. P. 3154–3155.
  15. Kirsanov Yu.A. Cyclic thermal processes and the theory of thermal conductivity in regenerative air heaters. Moscow: Fizmatgiz, 2007. 240 p. (In Russ.)
  16. Fok I.A. Solving the problem of diffusion theory by the finite difference method and its application to light scattering. L.: The State. Scientific Publishing House. 1926.
  17. Davydov B.I. Diffusion equation taking into account molecular velocity // DAN USSR. 1935. No. 2b. P. 474–475. (In Russ.)
  18. Predvoditelev A.S. The doctrine of heat and Riemannian manifolds. In the book. Problems of heat and mass transfer. Moscow: Energiya, 1970. P. 151–192. (In Russ.)
  19. Baumeister K., Hamill T. Hyperbolic equation of thermal conductivity. Solving the problem of a semi-infinite body. Heat transfer. 1969. No. 4. P. 112–119. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).