Carbon Sequestering in Agricultural Crops Using Various Agrotechnologies
- Authors: Zavalin A.A.1, Dukhanina T.M.1, Khusainov K.A.2
-
Affiliations:
- D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry
- Chechen Research Institute of Agriculture
- Issue: No 11 (2025)
- Pages: 60-70
- Section: Agroecology
- URL: https://journals.rcsi.science/0002-1881/article/view/352795
- DOI: https://doi.org/10.7868/S3034496425110073
- ID: 352795
Cite item
Abstract
Carbon accumulation in the crop yield on common chernozem and in the application of biologization and chemicalization agents in 4 links of field crop rotation was determined. The use of organic fertilizers (cattle manure and siderates), as well as mineral fertilizers, ensured the average annual intake of carbon into the soil, exceeding its alienation with the harvest. The application of manure at a dose of 30 t/ha ensured the accumulation of carbon in the soil from 5 to 10 t/ha, the carbon consumption with the alienated part of the crop was maximal in the first (peas, winter wheat, corn for grain) and fourth (oats, peas, winter wheat) links of crop rotations (from 9 up to 12 t/ha). Carbon sequestration in plant biomass increased with the use of various methods of tillage, manure, mineral fertilizers, seed inoculation and microbial preparation treatment. The maximum carbon accumulation in plant biomass occurred during the cultivation of corn (8.1 t/ha), followed by winter wheat (7.9 t/ha), oats (4.4 t/ha) and peas (3.7 t/ha). The maximum carbon removal from the field was observed during the cultivation of winter wheat (5.2 t/ha, or 66% of the total volume), followed by oats (2.7 t/ha, or 61%), peas (2.5 t/ha, or 66%) and corn for grain (2.1 t/ha, or 26%). The maximum carbon input into the soil occurred in the links of crop rotation with corn for grain, oats and peas (6.4 t/ha), and winter wheat, corn and oats (5.95 t/ha). Sideral crops increased the positive carbon balance to 3.5–5.5 t/ha, and manure at a dose of 30 t/ha increased from 2.5 to 4.5 t/ha. Mineral fertilizers increased carbon intake into the soil by 2–3 times, and the biological product provided a tendency to increase carbon accumulation. The maximum positive carbon balance (3.9–4.5 t/ha) was formed when cultivated in crop rotation with corn for grain, the minimum (3.0 t/ha) – when growing only ear crops.
About the authors
A. A. Zavalin
D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry
Email: zavalin52@mail.ru
ul. Pryanishnikova 31a, Moscow 127434, Russia
T. M. Dukhanina
D.N. Pryanishnikov All-Russian Research Institute of Agrochemistry
Email: zavalin52@mail.ru
ul. Pryanishnikova 31a, Moscow 127434, Russia
Kh. A. Khusainov
Chechen Research Institute of Agriculture
Author for correspondence.
Email: zavalin52@mail.ru
Lilovaya ul. 1, Grozny 366021, Russia
References
- Paustian K., Collier S., Baldock J., Burgess R., Creque J. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system // Carbon Manag. 2019. V. 10. № 6. P. 567–587. https://doi.org/10.1080/17583004.2019.1633231
- Козлов Д.Н. Почвенный углерод в экосистемах как пример мониторинга // Земледелие. 2024. № 6. С. 20–24.
- Иванов А.Л., Савин И.Ю., Столбовой В.С., Духанин Ю.А., Козлов Д.Н. Методологические подходы формирования единой Национальной системы мониторинга и учета баланса углерода и выбросов парниковых газов на землях сельскохозяйственного фонда Российской Федерации // Бюл. Почв. ин-та им. В.В. Докучаева. 2021. Вып. 108. С. 175–218.
- Abdo A.I., Sun D., Yang K., Li Y., Shi Z., Abd Allah W.E., El-Sobky E.E.A., Wei H., Zhang J., Kuzyakov Y. Carbon footprint of synthetic nitrogen under staple crops: A first cradle-to-grave analysis // Glob. Chang Biol. 2024. V. 30(4). e17277. doi: 10.1111/gcb.17277. PMID: 38634544
- Yadav G.S., Das A., Lal R., Babu S., Meena R.S., Saha P., Singh R., Datta M. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system // J. Clean. Product. 2018. V. 191. P. 144–157. https://doi.org/10.1016/j.jclepro.2018.04.173
- Lal R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems // Glob. Change Biol. 2018. V. 24. Iss. 8. P. 3285–3301. https://doi.org/10.1111/gcb.14054/
- Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils // Plant and Soil. 2002. V. 241. P. 155–176. https://doi.org/10.1023/A:1016125726789
- Wani O.A., Kumar S., Hussain N., Wani A.I.A., Babu S., Parvej A., Rashid M., Simona Popescu M., Mansoor S. Multi-scale processes influencing global carbon storage and land-carbon-climate nexus: A critical review // Pedosphere. 2022. V. 32. https://doi.org/10.1016/j.pedsph. 2022.07.002
- Столбовой В.С. Регенеративное земледелие и смягчение изменений климата // Достиж. науки и техн. АПК. 2020. Т. 34. № 7. С. 19–26. DОI: 10.24411/0235-2451-2020-10703
- Minasny B., Malone B.P., McBratney A.B. Soil carbon 4 per mille // Geoderma. 2017. V. 292. P. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
- Lin S., Li J., Liu Q. Overview on estimation accuracy of gross primary productivity with remote sensing methods. // Nat. Remote Sens. Bul. 2018. V. 22(2). P. 234–254. http://dx.doi.org/10.11834/jrs.20186456
- Wang R., Gamon J.A., Emmerton C.A., Springer K.R., Yu R., Hmimina G. Detecting intra- and inter-annual variability in gross primary productivity of a North American grassland using MODIS MAIAC data // Agricult. Forest Meteorol. 2020. V. 281. https://doi.org/10.1016/j.agrformet.2019.107859
- Kussul N., Lavreniuk M., Skakun S., Shelestov A. Deep learning classification of land cover and crop types using remote sensing data // IEEE Geosci. Remote Sens. Let. 2017. V. 14(5). P. 778–782. https://doi.org/10.1109/LGRS.2017.2681128
- Roberts D., Wilford J., Ghattas O. Exposed soil and mineral map of the Australian continent revealing the land at its barest // Nat. Commun. 2019. V. 10(1). P. 1–11. https://doi.org/10.1038/s41467-019-13276-1
- Абасов Ш.М., Гаплаев М.Ш., Хусайнов Х.А., Терекбаев А.А., Абасов М.Ш. Влияние средств химизации и биологизации на урожайность культур зернопропашного севооборота при разных способах основной обработки почвы // Плодородие. 2022. № 1(124). С. 54–57. doi: 10.25680/S19948603.2022.124.14
- Хусайнов Х.А., Тунтаев А.В., Муртазалиев М.С., Елмурзаева Ф.Д., Абасов М.Ш. Содержание азота в почве и урожайность озимой пшеницы при разных приемах основной обработки чернозема типичного с использованием средств биологизации // Рос. сел.-хоз. наука. 2022. № 5. С. 30–34. doi: 10.31857/S2500262722050064
- Хусайнов Х.А., Тунтаев А.В., Елмурзаева Ф.Д. Содержание подвижного фосфора в черноземе типичном при различных приемах основной обработки и применении средств химизации и биологизации // Плодородие. 2023. № 1(130). С. 22–25. doi: 10.25680/S19948603.2023.130.05
- Методика количественного определения объемов выбросов парниковых газов. Приказ Минприроды РA от 27 мая 2022 г. № 371.
- Руководящие принципы МГЭИК 2006 г. для национальных кадастров парниковых газов. МГЭИК, 2006. Т. 4.
Supplementary files

