Rademacher Chaoses in Problems of Constructing Spline Affine Systems
- Авторы: Lukomskii S.F.1, Terekhin P.A.1, Chumachenko S.A.1
-
Учреждения:
- Chernyshevskii Saratov National Research State University
- Выпуск: Том 103, № 5-6 (2018)
- Страницы: 919-928
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150975
- DOI: https://doi.org/10.1134/S0001434618050280
- ID: 150975
Цитировать
Аннотация
The paper considers systems of dilations and translations of spline functions ψm each of which is obtained by successive integration and antiperiodization of the previous one and the initial function is the Haar function χ. It is proved that, first, each such function ψm is the sum of finitely many series in Rademacher chaoses of odd order and, second, for eachm, the system of dilations and translations of the function ψm constitutes a Riesz basis; moreover, lower and upper Riesz bounds for these systems can be chosen universal, i.e., independent of m.
Об авторах
S. Lukomskii
Chernyshevskii Saratov National Research State University
Автор, ответственный за переписку.
Email: lukomskiisf@info.sgu.ru
Россия, Saratov
P. Terekhin
Chernyshevskii Saratov National Research State University
Email: lukomskiisf@info.sgu.ru
Россия, Saratov
S. Chumachenko
Chernyshevskii Saratov National Research State University
Email: lukomskiisf@info.sgu.ru
Россия, Saratov
Дополнительные файлы
