Rademacher Chaoses in Problems of Constructing Spline Affine Systems
- 作者: Lukomskii S.F.1, Terekhin P.A.1, Chumachenko S.A.1
-
隶属关系:
- Chernyshevskii Saratov National Research State University
- 期: 卷 103, 编号 5-6 (2018)
- 页面: 919-928
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150975
- DOI: https://doi.org/10.1134/S0001434618050280
- ID: 150975
如何引用文章
详细
The paper considers systems of dilations and translations of spline functions ψm each of which is obtained by successive integration and antiperiodization of the previous one and the initial function is the Haar function χ. It is proved that, first, each such function ψm is the sum of finitely many series in Rademacher chaoses of odd order and, second, for eachm, the system of dilations and translations of the function ψm constitutes a Riesz basis; moreover, lower and upper Riesz bounds for these systems can be chosen universal, i.e., independent of m.
作者简介
S. Lukomskii
Chernyshevskii Saratov National Research State University
编辑信件的主要联系方式.
Email: lukomskiisf@info.sgu.ru
俄罗斯联邦, Saratov
P. Terekhin
Chernyshevskii Saratov National Research State University
Email: lukomskiisf@info.sgu.ru
俄罗斯联邦, Saratov
S. Chumachenko
Chernyshevskii Saratov National Research State University
Email: lukomskiisf@info.sgu.ru
俄罗斯联邦, Saratov
补充文件
