Plane Partitions and Their Pedestal Polynomials
- Авторы: Ogievetsky O.V.1,2,3, Shlosman S.B.1,4,5
-
Учреждения:
- Aix Marseille Université, CNRS, CPT UMR 7332
- Kazan Federal University
- Lebedev Physical Institute
- Kharkevich Institute for Information Transmission Problems
- Skolkovo Institute of Science and Technology
- Выпуск: Том 103, № 5-6 (2018)
- Страницы: 793-796
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150884
- DOI: https://doi.org/10.1134/S0001434618050115
- ID: 150884
Цитировать
Аннотация
For a linear extension P of a partially ordered set S, we consider a generating multivariate polynomial of certain reverse partitions on S, called P-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of P. For S a Young diagram, we show that this polynomial generalizes the hook polynomial.
Ключевые слова
Об авторах
O. Ogievetsky
Aix Marseille Université, CNRS, CPT UMR 7332; Kazan Federal University; Lebedev Physical Institute
Автор, ответственный за переписку.
Email: oleg@cpt.univ-mrs.fr
Франция, Marseille, 13288; Kazan; Moscow
S. Shlosman
Aix Marseille Université, CNRS, CPT UMR 7332; Kharkevich Institute for Information Transmission Problems; Skolkovo Institute of Science and Technology
Email: oleg@cpt.univ-mrs.fr
Франция, Marseille, 13288; Moscow; Moscow
Дополнительные файлы
