Plane Partitions and Their Pedestal Polynomials
- Authors: Ogievetsky O.V.1,2,3, Shlosman S.B.1,4,5
-
Affiliations:
- Aix Marseille Université, CNRS, CPT UMR 7332
- Kazan Federal University
- Lebedev Physical Institute
- Kharkevich Institute for Information Transmission Problems
- Skolkovo Institute of Science and Technology
- Issue: Vol 103, No 5-6 (2018)
- Pages: 793-796
- Section: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150884
- DOI: https://doi.org/10.1134/S0001434618050115
- ID: 150884
Cite item
Abstract
For a linear extension P of a partially ordered set S, we consider a generating multivariate polynomial of certain reverse partitions on S, called P-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of P. For S a Young diagram, we show that this polynomial generalizes the hook polynomial.
Keywords
About the authors
O. V. Ogievetsky
Aix Marseille Université, CNRS, CPT UMR 7332; Kazan Federal University; Lebedev Physical Institute
Author for correspondence.
Email: oleg@cpt.univ-mrs.fr
France, Marseille, 13288; Kazan; Moscow
S. B. Shlosman
Aix Marseille Université, CNRS, CPT UMR 7332; Kharkevich Institute for Information Transmission Problems; Skolkovo Institute of Science and Technology
Email: oleg@cpt.univ-mrs.fr
France, Marseille, 13288; Moscow; Moscow
Supplementary files
