New insight into the partition theory of integers related to problems of thermodynamics and mesoscopic physics


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is shown in the paper that the number pN(M) of partitions of a positive integer M into N positive integer summands coincides with the Bose and Fermi distributions with logarithmic accuracy if one identifies M with energy and N with the number of particles. We use the Gentile statistics (a.k.a. parastatistics) to derive self-consistent algebraic equations that enable one to construct the curves representing the least upper bound and the greatest lower bound of the repeated limits as M → ∞ and N → ∞. The resulting curves allow one to generalize the notion of BKT (Berezinskii–Kosterlitz–Thouless) topological phase transition and explaining a number of phenomena in thermodynamics and mesoscopic physics.

Sobre autores

V. Maslov

National Research University Higher School of Economics; Ishlinsky Institute for Problems in Mechanics

Autor responsável pela correspondência
Email: v.p.maslov@mail.ru
Rússia, Moscow; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017