Geodesics in minimal surfaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract—In this paper, we consider connected minimal surfaces in R3 with isothermal coordinates and with a family of geodesic coordinates curves, these surfaces will be called GICM-surfaces. We give a classification of the GICM-surfaces. This class of minimal surfaces includes the catenoid, the helicoid and Enneper’s surface. Also, we show that one family of this class of minimal surfaces has at least one closed geodesic and one 1-periodic family of this class has finite total curvature. As application we show other characterization of catenoid and helicoid. Finally, we show that the class of GICM-surfaces coincides with the class of minimal surfaces whose the geodesic curvature kg1 and kg2 of the coordinates curves satisfy αkg1 + βkg2 = 0, α, β ∈ R.

作者简介

Carlos Riveros

Universidade de Brasília

编辑信件的主要联系方式.
Email: carlos@mat.unb.br
巴西, Brasília

Armando Corro

Universidade Federal de Goiâs

Email: carlos@mat.unb.br
巴西, Goiânia

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017