The Basis Property of Ultraspherical Jacobi Polynomials in a Weighted Lebesgue Space with Variable Exponent


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of the basis property of ultraspherical Jacobi polynomials in a Lebesgue space with variable exponent is studied. We obtain sufficient conditions on the variable exponent p(x) > 1 that guarantee the uniform boundedness of the sequence Snα,α(f), n = 0,1,..., of Fourier sums with respect to the ultraspherical Jacobi polynomials Pkα,α(x) in the weighted Lebesgue space Lμp(
x)
([-1, 1]) with weight μ = μ(x) = (1 - x2)α, where α >-1/2. The case α = -1/2 is studied separately. It is shown that, for the uniform boundedness of the sequence Sn-1/2, -1/2 (f), n = 0,1,..., of Fourier—Chebyshev sums in the space Lμp(
x)
([-1,1]) with μ(x) = (1 - x2)-1/2, it suffices and, in a certain sense, necessary that the variable exponent p satisfy the Dini-Lipschitz condition of the form

\(\left| {p(x) - p(y)} \right| \leq \frac{d}{{ - \ln \left| {x - y} \right|}},\;\;\;\text{where}\;\left| {x - y} \right| \leq \frac{1}{2},\;\;x,y \in [ - 1,1],\;\;d > 0,\)
and the condition p(x) > 1 for all x ∈ [-1,1].

Sobre autores

I. Sharapudinov

Daghestan Scientific Center of Russian Academy of Sciences; Vladikavkaz Scientific Center of Russian Academy of Sciences; Daghestan State Pedagogical University

Autor responsável pela correspondência
Email: mz@mi-ras.ru
Rússia, Makhachkala, 367025; Vladikavkaz, 362008; Makhachkala, 367025

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019